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NOMENCLATURE

Symbol Description
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x Building indoor temperature

d Building outdoor temperature

x̂ Building indoor temperature estimation

∆xd Building indoor temperature change due to heat transfer
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Continued on next page
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Continued on next page
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ABSTRACT

Dynamically determining input signals to a complex system, to increase perfor-

mance and/or reduce cost, is a difficult task unless users are provided with feedback

on the consequences of different input decisions. For example, users self-determine

the set point schedule (i.e. temperature thresholds) of their HVAC system, without

an ability to predict cost—they select only comfort. Users are unable to optimize

the set point schedule with respect to cost because the cost feedback is provided at

billing-cycle intervals. To provide rapid feedback (such as expected monthly/daily

cost), mechanisms for system monitoring, data-driven modeling, simulation, and

optimization are needed. Techniques from the literature require in-depth knowledge

in the domain, and/or significant investment in infrastructure or equipment to mea-

sure state variables, making these solutions difficult to implement or to scale down

in cost.

This work introduces methods to approximate complex system behavior predic-

tion and optimization, based on dynamic data obtained from inexpensive sensors.

Unlike many existing approaches, we do not extract an exact model to capture

every detail of the system; rather, we develop an approximated model with key

predictive characteristics. Such a model makes estimation and prediction available

to users who can then make informed decisions; alternatively, these estimates are

made available as an input to an optimization tool to automatically provide pareto-

optimized set points. Moreover, the approximation nature of this model makes the

determination of the prediction and optimization parameters computationally in-

expensive, adaptive to system or environment change, and suitable for embedded

system implementation. Effectiveness of these methods is first demonstrated on

an HVAC system methodology, and then extended to a variety of complex system

applications.
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CHAPTER 1

Introduction

1.1 Overview

Heating, Ventilation and Air Conditioning system, or HVAC system, is a system

designed for obtaining a desired temperature and/or comfort level for a targeted

space, usually indoor or vehicular, ranging from a simple stove in a home envi-

ronment, to a complicated and reliable air-conditioning system in airplanes and

submarines.(McDowall, 2006) As the name suggested, an HVAC system typically

is capable of offering some (if not total) control of temperature, humidity, venti-

lation, and/or filtration, to change the target’s air temperature and quality, with

its operation based on the principles of thermodynamics, fluid mechanics, and heat

transfer.

Among the various HVAC systems used in different places for variant purposes,

the most common system that people use in their daily lives is a building HVAC

system, which keeps the indoor atmosphere comfortable for their house and/or work

place. Almost every building HVAC system up-to-date requires some input from

human users that controls how the HVAC system should work. The typical input

signal is a setpoint temperature that specifies the target temperature the building

should obtain. No matter how “intelligent” modern HVAC would be, these decisions

are, and will be, made by the users.

However, the end users are often found in a situation of making these decisions

without having “enough” information to fully understand their consequences. For

example, when setting the target temperature, users usually do not have the ability

to gain insight in how much these settings would cost (in terms of electricity bill or
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KWh usage), neither do they have the insight in how to set these target temperatures

such that the cost of HVAC operation would be reduced while maintaining a certain

level of comfort, unless “some information” on the prospective cost consequences is

available.

Similar examples also exist outside the energy system world. For example, when

a user is planning a route including a set of points in a city, and he/she wants to pick

from a set of candidate routes that could potentially minimize the travel time. If we

assume we know the speed of the user’s vehicle all the time and there’s no traffic at

all, then this problem simply collapse into a linear programming problem. However,

if the traffic is presented and is a spacial-temporal non-linear function, then the user

is hard to make the optimal decision without knowing the traffic model.(Chiu et al.,

2011; Hu, 2013)

These types of problems can be captured as a class of problems where users are

asked to make decisions as inputs to a complex system (HVAC setpoint temper-

ature, routes), to minimize a certain cost (electricity usage, traffic congestion) or

to maximize a reward (comfort, arrival time), which may not be possible if some

information on the system’s behavior (prospective cost, traffic) is not available.

Therefore, mechanisms are needed to ensure effective feedback is available to users

interacting with complex systems to aid on making optimal/sub-optimal decisions.

However, it’s not trivial for users to obtain these necessary feedback information

on their own, because complex systems like HVAC operation are not trivial to model.

It is true that modeling and simulation of these systems have been studied intensively

both in academia and industry, however these models usually require expensive

investments on the infrastructure and/or domain-specific expertise (Nassif et al.,

2008; Peng and a.H.C. van Paassen, 1998; Riederer et al., 2002a,b; Tashtoush et al.,

2005).

In this work we discuss data-driven methods to approximate such complex sys-

tems through linearization and machine learning, based on data sampled from in-
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expensive sensors, and methods to calculate optimal/sub-optimal control signals for

these systems based on the approximated system model. Unlike most of the existing

approaches, this work is not to build a detailed model that potentially captures ev-

ery aspects of the system, but an approximation model that captures the principle

component of the system and provides estimations and predictions of the system

behavior based on the input control signal.

A new concept thermostat/framework is developed in this work to demonstrate

the proposed methods within the context of the HVAC domain and provide users

with feedback information on their energy decisions, as well as suggestion on how

they might be able to optimize these decisions, through a system approximation

process as well as control signal optimization process, based on data collected from

inexpensive sensors.

1.2 Motivation

A basic HVAC system consist of several core components including air damper,

mixing chamber, heating/cooling coil, fan, etc.(ASHRAE, 1996; McDowall, 2006)

Different configurations of these components would affect the performance of HVAC

system dramatically, however, in this work we assume the HVAC system as a black

box model, where the parameters of these internal components are determined and

unchanged once the HVAC model is selected. Component configuration and opti-

mization of the HVAC system is another topic in HVAC system design which is out

of scope of this work.

The invention and development of HVAC system can be traced back to as early

as 1880s when refrigeration became available. However, almost two centuries later

there are still many areas of a modern HVAC system design that remain in active

research and exploration, among which the Energy Conservation aspect of an HVAC

system is a rising and most challenging one, with the goal to reduce the energy

consumption of an HVAC system without compromising the comfort level.(Howell
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et al., 2009)

Numerous efforts are driving the research and development of technologies for

HVAC energy conservation. For example, from the HVAC system operation perspec-

tive, (Lu et al., 2004, 2005) discussed HVAC system optimization in the condenser

water loop, while (Fong et al., 2006) discussed HVAC system optimization from a

evolutionary programming approach. Another example is the development of smart

grid technologies (Electricity Advisory Committee (EAC), December 2008; U.S. De-

partment of Energy, 2008). In this broad scope there are technologies ranging from

low level innovations to efficiently harvest power from renewable resources (Dargh-

outh et al., 2011; Keis et al., 2002; Wang et al., 2007) to higher level mechanisms

that efficiently monitor and manage the underlying computational and physical re-

sources (Darghouth et al., 2011; Jiang et al., 2007; Lien et al., 2009; Sundramoorthy

et al., 2011). Ground level programs are also appearing, striving to engage end users

to consider how they too can contribute to becoming more energy efficient. For ex-

ample, Autodesk Green Building Studio (Autodesk Inc., 2010) is a web service that

analyzes a building model and provides a baseline report on the proposed building’s

carbon output from the consumption of resources such as fuel, electricity, or wa-

ter. Simulation tools are also available such as the EnergyPlus simulation program

(Department of Energy, 2012), to calculate hourly energy cost for a variety of com-

mercial and residential buildings. Parameters such as the building’s construction

and climate are considered, and integrate low-level HVAC and duct loss models,

among others.

HVAC energy conservation technologies are also of interest to end users. From a

homeowner’s standpoint, reduction of electricity consumption is beneficial in direct

monetary savings. According to the EPA report (US Environmental Protection

Agency (EPA), 2012), the average US household spends more than $2,200 a year

on energy bills, with about half of this amount incurred from heating and cooling.

From a national energy consumption perspective, home energy consumes 25% of the
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total energy consumed in the U.S. and worldwide.

HVAC systems are usually (if not always) equipped with a thermostat, a device

acts as the user interface that takes input from users and generate output to control

the HVAC’s components to obtain the desired temperature and air quality. It can

be as simplest as setting the temperature to a fixed target through a “knob”, to a

complex embedded system or SoC based“smart thermostat” with various features.

Figure 1.1 shows a smart thermostat that is equipped with a feature that enables

users to program set point temperatures for different time slots, such as “Morning”,

“Work”, or “Night.” through a LCD touch screen as well as web-based user interface.

(Filtrete, 2013)

Figure 1.1: Smart Thermostat with Programmable Features

While these thermostats provide a homeowner with time-indexed control over

the HVAC operation, homeowners are ultimately responsible for synthesizing the

setpoint array to meet their personal preferences for cost savings and comfort level.

Gao et al (Gao and Whitehouse, 2009) found that many users do not take advantage

of the programmable features, because users have difficulty determining a schedule
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on their own. To help homeowners to more efficiently utilize energy, utilities are

increasingly offering energy management services (Tucson Electric Power (TEP),

2012b) by providing remote monitoring and control hardware, as well as shared

control of HVAC operation with the utility. New thermostats are also available

which integrate environmental sensors (e.g. human activity and temperature) and

employ machine learning mechanisms to determine the occupant’s habits, and switch

HVAC modes based on these routines (NEST Lab, 2011).

However, it is not trivial for a homeowner to predict how much of an impact a de-

cision, such as adjusting the thermostat set point, may have. To further complicate

matters, homeowners may need to consider savings that can be obtained by react-

ing to dynamic pricing policies based on the time-of-usage such as peak time (most

expensive), shoulder time (moderate) and/or off-peak time (inexpensive) (Tucson

Electric Power (TEP), 2012a), biasing scheduling of high-energy systems to run at

non-peak times. From an end user’s perspective energy consumption is invisible and

abstract, leading to a poor understanding of how much energy appliances consume,

as well as misconceptions in how to conserve energy (Froehlich, 2009). Moreover, the

operational status of the HVAC system (either “On” or “Off”) is emergent, based on

the homeowner’s selected set point temperature and environmental factors. Thus,

while numerous platforms are available that monitor energy usage, information in

itself does not effectively change end user behavior, nor does it help the end users

save energy/money. (Hargreaves et al., 2010).

This work introduce a new concept thermostat with a prediction feature which

enables users to see the energy consequences of their decisions regarding comfort.

More specifically, when a user sets or resets the set point temperature schedules of

a building (home), the thermostat would provide a instant feedback on how much

energy this setting (new setting) will cost within a predictive time horizon (e.g.,

N = 30 days), thus gives the user a “tangible” feedback of their energy decisions.

In addition, the thermostat would be equipped with an additional optimization
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engine that optimizes the set point temperatures based on a user cost input, acting

as a recommender system to provide user with alternative method to determine the

setpoint schedule.

In this scenario, we remove the need for a human-entered array of time-varying

set points. Instead, the goal is to have a single input, which specifies the desired

HVAC operation costs for a time horizon (e.g., N = 30 days). For any non-negative

cost, though, the homeowner may wish to understand the internal home tempera-

tures that are the predicted consequence of this decision. As an example, a home-

owner may be willing to spend $200/N to keep internal temperature below 82◦F,

but may not be willing to spend $250/N to keep the internal temperature below

80◦F.

With this proposed new interfaces and tools that enable end users to visualize

the long term energy and cost consequences of their decisions and provide aid to the

end users for their temperature settings, the end users would ultimately be able to

consider themselves sufficiently informed to make energy decisions. Moreover, the

interactive cost feed back information would help save energy (Fischer, 2008), and

invoke a behavior modification impact to the users by bringing energy-awareness

incentives to the users to save energy. An example user interface implemented on

an mobil platform is shown in Figure 1.2, where Figure 1.2a illustrates a user inter-

face for real-time cost-comfort tradeoff which enables user to interact (i.e. change

setpoint temperature or cost constraint) and observe the tradeoff, while Figure 1.2b

illustrates an interface for cost estimation with a proposed setpoint temperature

schedule in a prediction horizon.
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(a) (b)

Figure 1.2: (a) Example user interface of cost feedback on setpoint temperatures
(b) Example user interface of cost prediction

1.3 Potential Impact

1.3.1 Behavioral Modification Effect

A typical user of the proposed innovation could be a homeowner that interacts with

a thermostat to set up the setpoint temperatures for the home HVAC system. It

could, however, expand to other archetypes of end users who bears the same behavior

such as building managers and apartment managers.

Currently most users choose their target setpoint temperatures in a “open loop”

fashion in terms of cost, they are either unconscious of the corresponding cost or

lack of proper tools to gather the cost information, leaving them in the dark trying

to optimize the setpoint, e.g. a common approach is to utilize a cost-saving setpoint
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sequence, where modes such as “Work” or “Evening” provide an ability to change

the setpoint for comfort when the homeowner is home, and reduced energy usage

when not. However, these empirical “hard-coded” optimization attempts are usually

non-optimal due to their open loop nature, and the users have no incentives to reduce

the cost due to lack of necessary feedback on the energy usage or cost.

With the proposed work, a candidate series of setpoints (created by the home-

owner) can be applied to estimate usage and cost. Alternatively, cost can be the

input, and the series of setpoints can be shown. Then, the customer can decide

whether the anticipated discomfort of the setpoints is worth the monetary savings.

If the homeowner ever decides to change the setpoints or goals, the cumulative costs

are updated in the interface.

The proposed innovation is able to help users making a well-informed decision,

or even reform the way the users interacts with systems like HVAC. Equipped with

real-time feedback information of their decision consequences, the users may even-

tually change the way they used to set their target temperatures, which conceptu-

ally, can be considered as a behavioral modification effect. This innovation brings

energy-awareness to the users, and bring them incentives to reduce the home energy

consumption.

1.3.2 Scalability

In addition to being a framework that puts the cost of HVAC operation directly

into the hands of the homeowner, the proposed innovation has the ability to be

scaled up and applied at a higher level energy eco-systems, requiring little modifica-

tion. Potential topics include demand side management, neighborhood/community

optimization, and renewable energy integrated optimization.

Demand side management, or energy demand management, is a process of mod-

ifying consumer-side energy demand to address the peak power problem. Typically

incentives or education are used to encourage users to lower energy usage during
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peak hours, or move energy usage to off-peak times. A more evenly distributed

load profile would have a higher efficiency on the energy generation site. From the

utility’s perspective, feedback information of the load profile could aid in making

decisions such as shutting backup generators to save energy or starting them to

fulfill a predicted high volume energy usage. Additionally, a dynamic pricing ap-

proach could be utilized (Department of Energy, 2005) to encourage users change

their energy usage. Users similarly benefit from real-time feedback information on

their energy systems, as the users could make a well-information decision or have

an optimizer to suggest an optimal solution (i.e. HVAC target temperatures, appli-

ances operation time etc.), which could potentially reduce the cost of running these

systems.

This framework can be scaled to include multiple households into the same pic-

ture as well. Besides running system feedback and optimization for a single house-

hold, a community level framework could gather feedback from each individual house

and run optimizations on the community level as a whole.

Moreover, with the development of renewable energy resources and their ap-

pearances in home building (such as solar panels), new challenges arises on energy

optimization with these energy generation units. The proposed work could po-

tentially works for these systems as well with minor modifications on the system

modeling approaches and integrating feedback information as well as optimization

with renewable energy resources.

1.4 Contribution

In this dissertation, a data-driven approach for HVAC system modeling, prediction,

and optimization is proposed. It has the following features that differentiate itself

with existing approaches:

• It employs a data-driven approach, with inexpensive sensor gathering neces-
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sary data, and machine learning algorithms to capture the principle operation

model of the system, while most of the existing approaches require significant

investment in sensor infrastructure and/or domain expertise to model a com-

plex system. Because of its data-driven nature, the proposed work does not

require users to manually input parameters that might be specific to a target

building, instead, all the parameters will be learned by the system through

the machine learning process, which makes this approach generative to any

buildings.

• The proposed work is able to provide a mid-term prediction/estimation of the

HVAC system operational cost, which typically has a 10-day prediction scope,

while other existing methods usually have a much shorter prediction scope

ranging from minutes to hours.

• The accuracy on the system cost prediction of the proposed approach is above

90%, moreover, it maintains a high accuracy of prediction regardless of the

HVAC load factor. i.e. Regardless of whether the HVAC system is running

heavily (for example cooling in summer) or idling most of the time (cooling in

winter), the system could effectively predict the cost of HVAC operations.

• An integrated optimization engine is also developed with the proposed work

to calculate an optimal/sub-optimal setpoints to help the users make deci-

sions. Furthermore, this optimization as well as prediction process can be

performed “on-line”, therefore give users an “up-to-date” information on the

system operation cost as well as decision options.

• The proposed approach utilizes approximation and regression techniques to

linearize a complex system, which makes it computational inexpensive and

suitable for implementation on embedded devices such as a smart thermostat,

thus ideal for integrating into existing infrastructure as well as emerging smart
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grid technologies.

• Finally, we illustrate how the proposed approach can be expanded to ad-

dress a set of problems with similar properties, as well as energy systems with

larger scope (community, regional), components (renewable resources) and

constraints (dynamic pricing). It could shed some light on designing systems

that brings immediate feedback information to users thus help them to make

a well-informed decision.

1.5 Dissertation Organization

The dissertation is organized as following: in the remaining sections of Chapter 1

we discuss the motivation of work on HVAC systems, as well as introductions on the

methodologies utilized in this work. This chapter finishes by discussing the impact

and contribution of this work. Chapter 2 starts by introducing necessary background

as well as literature reviews on existing approaches, and finishes by formulating the

problem this work is trying to solve. In Chapter 3 we discuss the abstraction and

generalization of this method, and provide guidelines to apply this method to other

similar problems. Chapter 4 discusses the details of the proposed approach and

its implementation for HVAC system modeling and prediction, where Chapter 5

discusses the optimization part of HVAC system problem. Their experimentation

setup as well as result are discussed in Chapter 6. Finally Chapter 7 concludes this

work an discuss the possible future works.
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CHAPTER 2

Background

2.1 HVAC Modeling

Numerous efforts exist both in academia and industry to model an HVAC system,

and can be generally divided into two categories: analytic approach modeling and

data-driven approach modeling.

2.1.1 Analytic Modeling

Analytic modeling approaches for HVAC system modeling are usually based on

principles of physics and thermodynamics, and applied to individual components

and/or the overall HVAC system. It requires a valid mathematical description of a

system model, which is derived from theoretical equations, and a set of parameters

in these equations governing the characteristics of the model. These parameters

are usually associated with the deployed HVAC system based on their configuration

and datasheet, and are unique to a specific target building. Based on the building’s

physical attributes such as footprint, insulation material, location, orientation etc.,

individual parameters must be configured. Because the non-linear nature of the

system as a whole, almost every analytic approach introduces some approximation

to simplify the problem such as to reduce the complexity of the system modeling.

First principles modeling

First principles modeling derives the theoretical equations for the system and builds

the model upon it. The building’s model is developed from physics laws, and the

knowledge of the building envelope and materials, as well as the building’s thermal
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parameters are utilized. In (Yik et al., 2001) models are developed to predict the

energy consumption for a wide range of commercial buildings, based on building

characteristics such as floor area, air conditioning system type, and the year when

the building was constructed.

A model to predict energy consumption based on the overall thermal transfer

value (OTTV) is given in (Chirarattananon and Taveekun, 2004), and is derived

from the building’s wall composition, glazing types, wall-window ratio, among oth-

ers. However, depending on its occupancy the thermal model of a building can vary

significantly (ASHRAE, 2001). As in (Gugliermetti et al., 2004), the influence of

the climate model is also needed to predict building energy consumption.

(He et al., 1997) presented a lumped-parameter model for the dynamics of the

vapor compression cycles. (Jin et al., 2007; Wang et al., 2004) presented a cooling

coil unit model based on energy balance and heat transfer principles, and reported a

simple but accurate prediction model for HVAC control. State space is also used in

(Kulkarni and Hong, 2004) to model the building dynamics and control the HVAC.

Simulation based modeling

Simulation based modeling approaches can also be found in literature where HVAC

system simulation software packages were utilized for modeling. Technically, these

software packages are using an analytic modeling approach as well to providing

users a system model, where the users will be prompted to input the parameters

and configurations of the to-be-modeled system. Users can also provide both spacial

and temporal simulation of the target system.

The Alternative Energy Product Suite (AEPS) System Planning tool (Alterna-

tive Software Concept, 2012) is a software application that focuses on the design,

modeling, and simulation of electrical energy systems with an emphasis on renew-

able energy sources (solar, wind, and hydro). These tools calculate energy genera-

tion, consumption, and storage for modeled systems. Energy and cost data can be
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analyzed to optimize the modeled system based on user objectives and priorities.

REM/DesignTM similarly calculates heating, cooling, domestic hot water, lighting

and appliance loads, consumption, and costs based on a description of the home’s

design and construction features as well as local climate and energy cost data (Ar-

chitectural Energy Corp., 2012).

TRNSYS (University of Wisconsin Madison, 2012) is an energy simulation pro-

gram taking a modular system approach that utilizes a system description language

to enable a user to specify platform components and the manner in which they

are connected. Due to its modular approach, TRNSYS is extremely flexible for

modeling a variety of energy systems in differing levels of complexity. However, no

assumptions about the building or system are made (although default information

is provided) and it is up to the end user to provide detailed information about the

building and sub-systems.

Additional literature utilizing simulation based modeling can be found in (Clarke

et al., 2002; Cui et al., 2008; McDowell et al., 2003; Sowell and Haves, 2001; Zhou

et al., 2008)

Limitations

Although the analytic approaches can offer a valid modeling tool of the target sys-

tem, they have the following drawbacks and limitations:

• A theoretical model for the target system as well as the model parameters is

needed. Often the process of choosing the suitable model and obtaining its

parameters requires some expertise in the HVAC system domain, and is not

typically a feasible task for a homeowner.

• Some analytic models only exist at the component level. i.e., they are not

suitable for a system level modeling.

• The model is vulnerable to dynamic changes in the parameters and variables,
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which could bring inaccuracy or even incorrectness to the results of the system

model output.

• Developing a model is usually computational expensive.

To overcome these difficulties, data-driven approaches are applied.

2.1.2 Data-driven Modeling

Data-driven approaches have been well documented in literature as well as industries

in the past decades with the development of new data mining and machine learning

algorithms. Methods deploying data-driven approach will usually requires a set of

data that is either sampled on-line or off-line as the training data for model building.

The most common data-driving approaches utilized in modeling HVAC systems

are parameter estimation modeling, time-series modeling, regression modeling, and

Artificial Neural Network modeling.

Parameter Estimation Models

For a given approximation of a building model, parameters can be estimated and

fit based on historical data. In (Wang and Xu, 2006) genetic algorithms are used

to fit models based on lumped parameters. The model was validated by comparing

predicted and actual indoor air temperature over time.

(Sturzenegger et al., 2012) propose automated linearization and parameter esti-

mation of thermal dynamics in order to permit composition of individual rooms to

produce a building model. Those results permit HVAC actuators, and alternatives

such as window blinds, to be considered when predicting heat flux.

Regression Models

In (Catalina et al., 2013) the heating energy demand of a building was predicted by

a multiple regression model, where there inputs for this model are building global
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heat loss coefficient (G), the south equivalent surface (SES) and the difference be-

tween the indoor set point temperature and the sol-air temperature, and this model

was validated with data sampled from 17 blocks of flats. (Katipamula et al., 1998)

employed a multiple linear regression (MLR) models to derive baseline models and

detect deviations in energy consumption under variant operational conditions. In

(Wu and Sun, 2012a,b) a physics-based auto-regression moving average (pbAR-

MAX) model is used for indoor temperature prediction. (Leung et al., 2012) uses

weather temperature data as well as the occupancy space electrical power demand as

inputs to a neural network to predict the building cooling load, where the prediction

yields acceptable results for summer seasons, large variation is presented for winter

seasons. (Yun et al., 2012) use an indexed ARX model, where the coefficients of the

model change according to time, to produce a 1-hour ahead prediction of building

thermal load. (Escrivá-Escrivá et al., 2011) uses ANNs on independent end users to

obtain a prediction of electricity consumption by summing each end users’ consump-

tion. (Mustafaraj et al., 2010) used Box–Jenkins (BJ), auto-regressive with external

inputs (ARX), auto-regressive moving average with external inputs (ARMAX) and

output error (OE) models to produce a 30-min or 2-hour ahead prediction of room

temperature and humidity, and validate the models by sampled data in weekdays

of summer, fall and winter season. (Li et al., 2009) investigated four modeling

methods, namely back propagation neural network (BPNN), radial basis function

neural network (RBFNN), general regression neural network (GRNN) and support

vector machine (SVM) for hourly cooling load prediction. (Xi et al., 2007) employed

support vector regression (SVR) to build a nonlinear dynamic model of a HVAC sys-

tem, upon which a non-linear Model Predictive Controller was design. (Dong et al.,

2005) employed support vector machines with radial-basis function (RBF) kernel for

building energy consumption prediction. With inputs from outdoor temperature,

relative humidity as well as global solar radiation, they reported a prediction result

with less than 4% error.
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Artificial Neural Network models

An artificial neural network (ANN) is used to determine the corresponding build-

ing energy consumption model (Beghi et al., 2010; Ben-Nakhi and Mahmoud, 2004;

Karatasou et al., 2006a). In (Karatasou et al., 2006b), time series analysis was

combined with ANNs to predict 1-hour-ahead energy consumption. In (Yang et al.,

2005), two adaptive ANN models were proposed to predict the energy use, namely

the accumulative training and sliding window training models. An ANN is trained

in (Gonzalez and Zamarreno, 2005) by means of a hybrid algorithm where prediction

is made based on current and forecasted values of temperature, current load and the

hour of the day. Alternatively, (Amjady, 2001) utilizes a prediction method with

auto-regressive integrated moving average (ARIMA) with results demonstrating a

better fit than an ANN. In (Cherkassky et al., 2011), a clustering and regression

method is used to predict the (electrical) power consumption, dividing the data

into occupied, unoccupied, ramp-up and ramp-down sections where regression is

used on the occupied and unoccupied segments to predict the power consumption.

(Li and Huang, 2013) reviewed and evaluated four popular models for short-term

cooling load prediction, including Auto-regressive Moving Average with Exogenous

inputs (ARMAX) model, Multiple Linear Regression (MLR) model, Artificial Neu-

ral Network (ANN) model and Resistor–Capacitor (RC) network. With TRNSYS

simulated data the MLR model and the ARMAX model have better prediction ac-

curacy and precision and the RC network model has better adaptability to control

set points. (González and Zamarreño, 2005) deployed a feedback ANN to predict

the hourly energy consumption in buildings. (Peng and a.H.C. van Paassen, 1998)

used a zone model derived from computational fluid dynamics to model the indoor

temperature as a state space model. (Chen et al., 2010; Guan et al., 2009) utilized

wavelets transform as well as neural network to make short term load prediction,

where historical and similar day load profile were feed to wavelets transforms for

frequency decomposition, then individual neural networks were deployed to predict
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each frequency component, which was summed to get the final prediction.

Limitations

While a data-driven approach generally alleviates the building-specific dependency,

it also has limitations:

• In order to achieve a desired accuracy these approaches may be computation-

ally expensive, making them unsuitable for an embedded system implementa-

tion (Stanek et al., 2001).

• Many of these approaches focus on the individual error at each sample point,

rather than taking the error distribution as a whole into consideration, there-

fore lacks a holistic view on the model over time.

• Many of these approaches require an intensive data sampling process, which

leads extra cost on sensors and infrastructure if not already installed.

• The prediction horizon for these approaches are relatively short (in some, as

short as 1 hour); such a time horizon is not sufficient for a 7-10 day cost

accumulation, or to give users a meaningful feedback.

2.2 Usage optimization

HVAC system optimization often refers to improve the system efficiency and/or

reduce the cost of running the system, and numerous efforts have been found to

obtain this goal. Depending on where the optimization occurs they can be catego-

rized as component level optimization and system level optimization. Component

level optimization aims at improve the HVAC system efficiency by improving one

or more components in the system (Jin et al., 2007; Ke and Mumma, 1997; Wang

et al., 2004). On the other hand, system level optimization often involves changing

the control schema of the HVAC system while leave each of the components intact
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(Mossolly et al., 2009; Nassif et al., 2004, 2005). In this dissertation we mainly focus

on the second type of optimization and study the effects of manipulating set point

temperatures to the HVAC system efficiency. This work treats the HVAC system

as a black box, where the input to it is the set point temperature, the output is the

operation status of the system, and the cost is a function of its operation status and

time. under these circumstances optimization means finding an optimal control (set

point temperature) strategy that reduce the cost of running HVAC system while

maintaining a certain level of comfort for the users.

2.2.1 Open-loop control

The most straight-forward approach to control the HVAC system input (set point

temperature) comes with an “Open-loop” or “fire and forget” fashion, where a user

configures a set point temperature and lets the system run under this configuration.

This control scheme is what most of the current thermostat and HVAC system

adopts, including the simple “knob” form thermostat where the user configures a

single set point temperature for hold all the time until it’s changed manually by

the user again, and the “programmable” thermostat where user can specify the

set point temperatures for different time of the day such as “work”, “home” and

“sleep” etc. No matter what forms of input are provided to the thermostat, these

control schemes do not provide users any feedback on their set points cost-wise, and

therefore considered as an open-loop control scheme. The HVAC/thermostat itself

is a close-loop control in terms of driving the temperature to the set point.

Studies have shown that users are not good at choosing the optimal set point tem-

peratures (Gao and Whitehouse, 2009) to reduce the cost, and the “programmable”

thermostat are often found misleading as these programmable features make the

users think they are saving energy. Indeed, only with carefully selected set point

temperature can a smart thermostat help save energy. Some “smart” thermostats

take a more active role to detect the presence of human in the building with motion
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sensors and turn on/off the HVAC system accordingly, while other thermostats have

“learning” abilities to acquire the user’s set point temperature and presence pattern

statistically. There also exists smart thermostats that will perform pre-cooling and

pre-heating actions to optimize the energy usages, i.e. the thermostats will do

horizon prediction that a set point change is coming, and start cooling/heating in

advance, or reduce energy consumption by doing advanced scheduling of the HVAC

unit to take advantage of the known best performance of those units. These further

steps may help reduce the energy usage to a certain degree depending on the accu-

racy of these sensors and the occurrences when the user is absent. However, none

of these smart thermostats provide a cost-comfort correlation to the users to show

them the trade-off, nor the consequences of their energy decisions, not to mention

an optimization of set point schedule under a cost/consumption constraint.

2.2.2 Application to specific building models

Given a building-specific thermal model (Fong et al., 2009; Mathews et al., 2000;

Nassif et al., 2004) a number of tools can then employ optimization algorithms such

as reset control, genetic algorithms, etc. to optimize the HVAC operation. Deter-

mining these values are cumbersome even for a technically savvy homeowner, so

alternative approaches to use collected data have been proposed. These approaches

typically collect the thermal data from a building and employ an optimal search al-

gorithm in the configuration space, to determine the optimal solution given a specific

thermal configuration (set point, outside temperature etc) (Wemhoff, 2010).

There are a few limitations when applying this approach to choosing new set

points. First, the collected data may not cover the complete configuration space, so

algorithms designed to find an optimal solution are unlikely to choose values outside

the region previously explored. Moreover, many of the previous efforts that consider

HVAC optimization employ short-term HVAC usage prediction, limiting the scope

of the optimization to one or two days.
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2.2.3 Predictive control

Model Predictive Control (MPC) (Camacho and Bordons, 2004) and Nonlinear MPC

(Allgöwer and Zhen, 2000) have been successfully applied to many long horizon con-

trol optimization problems due to its ability to meet constraints without requiring

expert intervention (Garcia et al., 1989). In climate control optimization applica-

tions, the MPC approach is to guarantee certain comfort levels at predetermined set

points. The use of MPC for optimization of a given cooling demand is described for

buildings with a series of chillers is discussed in (Ma et al., 2012). That approach

uses a hybrid model for cold water storage tank, is validated by historical data,

and takes into account weather prediction to predict future states. In (Oldewurtel

et al., 2012) the approach also utilizes weather prediction, and demonstrates accu-

racy and tunability of an MPC approach across many different kinds of buildings

and HVAC systems. Authors in (Aswani et al., 2012a,b) introduce a way of us-

ing a semi-parametric regression to estimate the building heating load, and apply

learning-based MPC to reduce the energy consumption in a single room testbed.

In multi-zone office buildings, the feasibility of an MPC approach is discussed in

(Privara et al., 2011). MPC has also been shown to be successful in emphasizing en-

ergy savings with minimal retrofit needs, as in (Široký et al., 2011). In (Avci et al.,

2013) a Model Predictive Control (MPC) method is utilized to optimize the HVAC

system operation cost as well as the user comfort level with real-time electricity pric-

ing policy. The indoor temperature was modeled using a first-order linear system

(ẋ = f(x)) and the setpoint temperature was selected based on electricity price as

well as a user tolerance factor. MPC was utilized based on the indoor temperature

model and a simulation on a 48-hour data was carried out to validate the controller

decisions.

The benefits of MPC are evident in the literature, but still require a definition

of the state update function ẋ = f(x, u) (either in continuous or discrete form) in

order to optimize the system cost over time. Such an approach requires installa-
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tion of sensors and other equipment whose cost and energy to manufacture may

exceed the savings gained by the optimization approach. Without specification of

the state update equation it is not possible to directly apply an MPC approach,

since the optimization phase usually requires a closed form expression for the state

update equation, in order to utilize gradient descent (Richter et al., 2009) or other

optimization methods.

2.3 Problem statement

Therefore in order to enable the user making “well-informed” decisions, feedback

information on the correlation of their decision and cost should be presented. More-

over, optimization should be conducted based on this correlation to close the loop.

This work presents the formulation of the correlation and optimization problem, as

well as the methodology of solving such a problem. This methodology is different

from other smart thermostat optimization problems in the sense of providing a pre-

dictive cost-comfort correlation as well as cost-constrained optimization. Moreover,

in this paper we propose to avoid specifying the state update function due to the

accumulated error over a long (e.g. 10 days) horizon of such a model.

Concretely, our approach requires (partial) sampling of state variables and in-

puts, and is decomposed into two tasks: prediction and optimization. The prediction

task provides an estimate of cost for a future horizon, based on a recent input hori-

zon. The optimization task uses the same input horizon, plus the cost estimate, to

select set points in order to meet the cumulative cost constraints.

Figure 2.1 presents this framework applied to a user-centric HVAC management

framework composed of prediction and optimization components which (1) dynami-

cally capture the characteristics of the underlying system and estimates its behavior

within a given time horizon, (2) calculates cost of operation based on the set point

schedule, electricity cost (ce), weather, and predicted HVAC usage, and (3) gen-

erates an optimized time-varying set point schedule r∗ for the HVAC unit based
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on user defined constraints. To briefly describe the variables in the framework:

mode ∈ H,C means an HVAC can be working in one of two modes: Heating or

Cooling, r is the user-set temperature while r∗ is the optimized temperature set

points generated by the framework; u is the control signal from thermostat to the

HVAC unit; x is the indoor temperature while d is the outdoor temperature; ∆xw

stands for the temperature changed due to HVAC work. w̃ is the predicted HVAC

utilization, and Ce the cost constraint.

Existing
InfrastructureProg.

Thermostat HVAC

Home(Plant)
f (∗) ∫

u

mode∈{H ,C }

Δ xω

ẋ x

Cost 
Interface

Controller

HVAC
Prediction

Engine

HVAC Optimization Engine (
x

Δ xω

r
d

)
HVAC Management Framework

dd

r
r *

r *

ω̃(∗)

C0
C0

ce
ce

x

Figure 2.1: Block-level diagram of the Cumulative Cost Optimization Framework

We use the following variables: disturbance d represents the outside temperature,

and x represents indoor temperature, r is the (time-varying) HVAC set point signal.

Let u(t) = u ∈ {0, 1} represent the off/on control signal to the plant, and let the

cost of operating the plant over a continuous horizon from time 0 until time T be
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C =
∫ T
0
Kudt where K ∈ R+ represents the unit cost of plant operation.

The signal u is the result of a potentially nonlinear control function u = g(x, r),

where x, r ∈ R are also time-varying signals that represent the state value and set

point signals, respectively. We assume a nonlinear function ẋ = f(x, u, d) where d

is a bounded, time-varying, Gaussian disturbance.

The correlation problem is to find a model M that maps the set point tem-

perature r to the cost C, over a prediction horizon [Tk, Tk+n], given data sampled

from [Ti, Tj], i ∈ [0, k], j ∈ [i, k], and a prediction of disturbance over the prediction

horizon di, i ∈ [k, k+n]. The problem is to generate r such that the actual cost, C,

is within some neighborhood of a desired cost, C0. The contribution of this work is

to generate r without explicitly defining f in closed form. Rather, the work directly

measures the integrated values of u over fixed horizons with known measured inputs

of d and x, and with predicted values of d, but without predicting x over the horizon.

This is possible if x tracks r for a large portion of the horizon: exceptions to this

represent either guaranteed cost, or guaranteed cost savings. The horizon in this

work is on the order of 7-10 days.

In this work we assume the system is in cooling mode, though equivalent state-

ments for heating mode are straightforward. Due to space constraints, this paper

discusses behavior during seasons where the temperature is higher than the set points

during the day, thus we satisfy the requirement that x tracks r for a large portion of

the horizon. This assumption does not reduce the impact of the work, since those

seasons of the year often reflect the highest strain on homeowner cooling costs, and

frequently strains utilities that must meet consumer demand, which may cause a

brownout/blackout (FRONTLINE, 2010; Norman L. Miller and Auffhammer, 2008).
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CHAPTER 3

Framework Abstraction

In the previous chapters a HVAC system modeling and optimization problem is

introduced. In this chapter we extend the discussion to solving similar optimal

control problems. We start with a brief review on the classic linear system optimal

control theory, as well as a description of model predictive control, followed by

discussions on their requirements of obtaining a system model. Then we provide

an abstraction of a data-driven approximation approach and its general work flow,

which relaxes the requirements on the system model, alleviating the computational

demand, while maintaining an acceptable outcome.

3.1 Classic system control

3.1.1 State space model

In control theory, a state space representation can be used to model a linear system

with state differential equation and output equation (Dorf, 1995). A typical state

space model is written as: ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(3.1)

where x(·) is the system state vector, y(·) the system output vector, u(·) the control

vector, and A(·),B(·),C(·) are state, control, output matrix respectively. A non-

linear system can be linearized to this form on some equilibrium or reference point.

For the purpose of simplicity we utilize a Linear Time Invariant (LTI) system

without losing generality, also we assume the system output is independent with
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control signal, i.e. D = 0, therefore the system becomes: ẋ = Ax + Bu

y = Cx
(3.2)

There are many advantages of representing a linear system with state space

model. We point out some of these advantages without proof below, interested

readers can refer to (Dorf, 1995) for details.

• System transfer function

Laplace transform of system transfer function G(s) can be calculated by

G(s) = CΦ(s)B, where Φ(s) = [sI −A]−1 is the Laplace transform of state

transition matrix Φ(t) = exp(At).

• Controllability

State controllability implies that it is possible to steer the states of the system

from any initial value to any final value within a finite time window. A system

is controllable if the following equation holds:

rank([B,AB,A2B, ...,An−1B]) = n (3.3)

• Observability

State observability is a measure for how well a system states can be inferred

by the knowledge of external output. A system is observable if the following

equation holds:

rank(



C

CA

CA2

...

CAn−1


) = n (3.4)
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Moreover, a Linear Quadratic Regulator (LQR) can be applied for system opti-

mal control, as described in the following section.

3.1.2 Optimal control

Optimal control system is a system that provides a minimum performance index,

such as the sum/integral of squared error. Concretely, the performance of a system

can be written in terms of state variables x and control signals u as:

J =

∫ t

0

g(x,u, t)dt (3.5)

Suppose the system is represented as

ẋ = Ax + Bu (3.6)

and the performance index is defined as

J =

∫ t

0

(xTx)dt (3.7)

The above performance index indicates the goal of the control system is to bring

the internal states to the origin, i.e. x = 0.

If a feedback controller where u is some function of the measured state variables

x is used:

u = −k(x) (3.8)

we could define a matrix H:

H = A−BK (3.9)

And the optimal control parameter can be obtained by:

1. Determine a matrix P that satisfies Equation (3.10), where H is defined in

Equation (3.9)

2. Minimize J by determining the minimum of Equation (3.11) by adjusting the

unspecified system parameters (i.e. K for this example)
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HTP + PH = −I (3.10)

J =

∫ ∞
0

xTxdt = xT (0)Px(0) (3.11)

The above formation handles the performance in term of tracking the setpoint

(x = 0). If the magnitude of the control signal should be counted, i.e., the value of

control signals u should be examined due to physical system bounds and/or control

signal cost, the performance index can be rewritten as:

J =

∫ ∞
0

(xTQx +Ru2)dt (3.12)

where R is the scalar weighting factor on the control signals. (Dorf, 1995)

This performance index is then minimized when:

K = R−1BTP (3.13)

and matrix P is determined from the solution of the equation:

ATP + PA−PBR−1BTP + Q = 0 (3.14)

Equation (3.14) is often called the Riccati equation, and this optimal control is

called the Linear Quadratic Regulator (LQR).

LQR is often used for tracking some desired trajectory, e.g. set point temperature

for an HVAC system. However, as the illustrated process suggested, this method

would require the knowledge of matrices A,B and C, which may not be available

for some systems, e.g. the HVAC system and the plant/building thermodynamics.

Moreover, the performance index J provides no explicit constraints on the

bounds of control signals u, making it difficult for situations where explicit bounds

on control signals are posed e.g. cost limit constraint on HVAC operation. Indeed,

in practice engineer needs to specify the weighting factors and compare the results

with the specified design goals. Often this means that controller synthesis will still

be an iterative process where the engineer judges the produced ”optimal” controllers
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through simulation and then adjusts the weighting factors to get a controller more

in line with the specified design goals.

Furthermore, the LQR is not capable of addressing system noise, suppose an

additive noise v(t) to the system:

ẋ(t) = A(t)x(t) + B(t)u(t) + v(t) (3.15)

This noise gets accumulated with the integral of state variables x, but not re-

flected in Equation (3.14), therefore the LQR would provide incorrect control signals.

We provide a simple example in the following section to illustrate this issue.

3.1.3 System disturbance in LQR example

Suppose we have a system defined as: ẋ = Ax + Bu

y = Cx + Du
(3.16)

where:

A =


−2 −1.5 −1 −0.5

2 0 0 0

0 1 0 0

0 0 1 0

 B =


2

0

0

0


C =

[
0.5 0.5 0.75 0.25

]
D = 0

(3.17)

The corresponding system transfer function for this system is:

G(s) =
s3 + 2s2 + 3s+ 1

s4 + 2s3 + 3s2 + 2s+ 1
(3.18)

We denote the coefficients in the numerator and denominator of this transfer

function as:

num =
[
1 2 3 1

]
(3.19)
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den =
[
1 2 3 2 1

]
(3.20)

Suppose LQR is utilized to control the system with a state feedback K, with

weighting factors in Equation (3.12) selected as:

Q =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , R = 10 (3.21)

By solving Equation (3.13) and Equation (3.14), we get the state feedback gain:

K =
[
0.4258 0.4665 0.4776 0.1531

]
(3.22)

Applying this state feedback u = −Kx to the original system get a compensated

system:  ẋ = (A−BK)x

y = Cx
(3.23)

The impulse response and step response of the original system and the compen-

sated system are shown in Figure 3.1. One can observe that by introducing the

feedback, the system will gain better performance on settle time and overshoot, and

the steady state will drift to a new equilibrium point.

If a disturbance occurs on the system, indeed, suppose the system transfer func-

tion Equation (3.18) changes to:

G(s) =
s3 + 2s2 + 3s+ 1

1.5s4 + 2s3 + 3s2 + 2s+ 1
(3.24)

where a disturbance is introduced on the coefficient of term s4 in the denominator.

The corresponding state space model of this disturbed system will be:

A′ =


−1.33 −1 −0.67 −0.67

2 0 0 0

0 1 0 0

0 0 0.5 0

 B′ =


2

0

0

0


C′ =

[
0.33 0.33 0.5 0.33

]
D′ = 0

(3.25)
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Figure 3.1: System response of original example system and state feedback compen-
sated system. (a) Impulse response (b) Step response

With this disturbed system, if the feedback gain K is not updated, i.e. K

remains the same as of Equation (3.22), applying it to the disturbed system yields: ẋ = (A′ −B′K)x

y = C′x
(3.26)

Its impulse and step response is illustrated in Figure 3.3, as compared to the

original system and compensated (undisturbed) system. The steady state again

drifted to another equilibrium point.

Additionally, to ensure the control is optimal, one need to update the feedback

gain K′ for the disturbed system by solving Equation (3.13) and Equation (3.14),

yielding:

K′ =
[
0.5587 0.4785 0.3696 0.1261

]
(3.27)

The above example shows that disturbances in the system will introduce errors

on the output equilibrium point, as well as a need for updating the feedback gain.

Figure 3.3a shows step response of 100 systems, generated by the example system

described in Equation (3.18), with the coeffients in the numerator and denomintor
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Figure 3.2: System response of disturbed system (a) Impulse response (b) Step
response

disturbed by a uniform distributed noise σ = U [0, 1]. Figure 3.3b shows the box

plot of the feedback gain values.

To address this problem, Linear Quadratic Gaussian control (LQG) was intro-

duced (Athans, 1971; Speyer, 1979), where Kalman Filter (Kalman, 1960) and LQR

are combined to address system uncertainty and/or incomplete state information.

However, the LQG only address system uncertainty that is an additive Gaussian

white noise, makes it unavailable for systems with non-Gaussian disturbance, e.g.

HVAC operation will have system disturbances from outside temperature, in-house

appliances, human activities, which are not necessarily Gaussian white noise distri-

bution.

3.1.4 Model predictive control

Model Predictive Control (MPC), also called “receding horizon control”, is based on

iterative, finite horizon optimization of a plant model. At time t the current plant

state is sampled and a cost minimizing control strategy is computed for a relatively

short time horizon in the future. Only the first step of the control strategy is
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Figure 3.3: System response and feedback gain of disturbed systems (a) Step re-
sponse (b) Feedback gain values

implemented, then the plant state is sampled again and the calculations are repeated

starting from the now current state, yielding a new control and new predicted state

path (Camacho and Bordons, 2004). An illustration of the MPC process in discrete

time is depicted in Figure 3.4.

For a plant modeled as x(k + 1) = f(x(k), u(k)), the input within the optimiza-

tion horizon N :

u|̇k = (u(k|k), u(k + 1|k), ...u(k +N − 1|k)) (3.28)

is determined at each time k. The control input is calculated in order to minimize

the predicted cost over the optimization horizon k, k + 1, ..., k + N − 1. And as

described, the first control input u(k|k) will be applied. (Camacho and Alba, 2013;

Morari and H Lee, 1999)

MPC has advantages in handling complex system control with the built-in system

model. Because its limited optimization horizon nature, it usually performs well in

practice. However, it still requires the following to perform:

• an internal dynamic model of the process
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Figure 3.4: MPC scheme in discrete time

• a history of past control moves and

• an optimization cost function J over the receding prediction horizon

3.2 Data driven approximation

In this work we try to alleviate the requirement of building a plant/system model

explicitly. Instead, we build an input-output relationship of the system from simple

and linear approximation without specifying the system dynamics model, and this

approximation is based on the data sampled, which may or may not be complete.

In the following section we describe this work flow mathematically.

Suppose we have a target system with system state vector x, system input/-

control vector u and system output vector y. The system dynamics is governed

by a function ẋ = f(x) where f(·) can be either linear or non-linear. Moreover,

assume we have some sensors that are capable of acquiring at least part of the state

information and input/output information, i.e. the sampled state variables xs is a

subset of the system state variables: xs ∈ x. For example, for the HVAC system

described in previous chapters one of the system state variable, indoor temperature,
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was being sampled, while another variable, indoor humidity, was not. The same

assumption holds true for sampled input, and output variables.

The task of the system approximation is then to find an estimation of the system

input-output relationship:

ŷt = f̂(xs,us) (3.29)

where ŷt is the estimation of target output variable(s), and xs, us the partially

sampled state and input variables respectively.

Moreover, we assume the target output variable(s) yt is observable, meaning we

can sample its value through sensors.

Assumption 1. Target output vector yt is a subset of observable output ys:

yt ∈ ys ∈ y

Ideally, we want to have the estimation function f̂(·) to be a simple form to

be used, such as first order linear function f̂(x) = α1x1 + α2x2 + . . . . However,

the system itself may not neccesarrily be a linear function relationship, therefore,

some mapping functions may be needed to transform the orignal signals to another

form. Concretely, in the proposed approach we assuem the estimation function a

first order linear function as following:

Ỹt = A0 + Az (3.30)

where Ỹt is a diagonal matrix with:

Ỹt =


ỹ1, 0, 0, . . . , 0

0, ỹ2, 0, . . . , 0

0, 0, ỹ3, . . . , 0

. . .

 (3.31)

and ỹi is the mapping function of the target output variable:

ỹi = F(ŷti) (3.32)
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which maps the target output variable to another space ỹ

The matrix z is defined as:

z =
[
z1, z2, z3, . . .

]
(3.33)

where zi are augmented column vectors that are functions of sampled input and

state variables: 
z1 = G1(xs,us)

z2 = G2(xs,us)

. . .

(3.34)

with mapping functions Gi

Finally the matrix A is the coefficient matrix:

A =



α11, α12, α13, . . . , α1n

α21, α22, α23, . . . , α2n

α31, α32, α33, . . . , α3n

. . .

αn1, αn2, αn3, . . . , αnn


(3.35)

and A0 a constant offset vector.

Therefore, for a scalar-value mapped target output ỹ1, the above equation Equa-

tion (3.30) collapse to a one-dimensional situation:

ỹ = α0 + αz

= α0 + α1z1 + α2z2 + . . .
(3.36)

Indeed, the two mapping functions Equation (3.32) and Equation (3.34) essen-

tially transform the original input and output vectors into another space such that

relationship between the transformed output ỹi and input zi can be approximated

by a linear function Equation (3.30). And the goal for this problem becomes to

find the transform functions in Equation (3.32) and Equation (3.34), such that the

approximation generate the best fit in a least mean square sense.
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Suppose the transform function is already known, there will be three possible

outcomes from these transform functions, which is described in the following. For

visualization purpose we will discuss it in a one-dimensional approximation scenario,

i.e. ỹ = α0 + α1z1, but the readers should be aware the this discussion also holds

for higher dimensions.
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Figure 3.5: Simulation results comparing (a) Best case scenario: an idea case of a
perfect linear relationship (b) Worst case scenario: a uniformly random distribution

1. Best Case Scenario: Ideally, if output ỹi and input zi preserve a perfect linear

relationship, as show in Figure 3.5a, then no further action needs to be taken,

as the linear function describing their relationship can be utilized directly for

the system approximation. However, this scenario rarely happens, if happens

at all.

2. Worst Case Scenario:

On the contrary, when the output ỹi and input zi is statistically independent,

or random as shown in Figure 3.5b, the previous approximation would fail in

terms of capturing the main dynamics of the system under this scenario.
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3. Desired Scenario

The desired scenario, which is the purpose of the transform functions, is to

formulate the output ỹi and input zi such that they show significant variance in

one and only one direction, whereas insignificant variances in other directions.

Concretely, let matrix Si be a sample/observation recorded from ỹi and zi:

Si =


z
(1)
i

T
,

˜
y
(1)
i

z
(2)
i

T
,

˜
y
(2)
i

z
(3)
i

T
,

˜
y
(3)
i

. . .

 (3.37)

where the upper script j in z
(j)
i means the jth sample.

The matrix Si can be diagonalized by Singular Value Decomposition (SVD)

as:

Si = UΣV∗ (3.38)

where Σ is a diagonal matrix whose value indicates the variances in each

direction specified in the orthogonal basis U, in a decreasing order. SVD

would guarantee the first component in Σ is the most significant component of

the data set. An example of SVD concept is shown in Figure 3.6b. Interested

readers can refer to (Golub and Reinsch, 1970; Klema and Laub, 1980) for

more information.

Therefore, the desired transformation should generate the matrix Si such that

its SVD Si = UΣV∗ preserve the following property:

σ1 >> σj j 6= 1 (3.39)

where σi, i = 1, 2, ...n is the diagonal values of Σ.

An example of such scenario is illustrated in Figure 3.6a
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Figure 3.6: Simulation results comparing (a) Desired Scenario (b) Principle Com-
ponent Analysis

3.3 Determining Transform Functions

As stated above, the transform functions play a key role in the process of approx-

imation. However, as the targeted systems varies and their complex nature, it’s

infeasible to have a “general” rule for the transform function formulation that cov-

ers all possible systems. However, some approaches might be applied to tackle this

problem depending on the problem setup. In the following section, we discuss some

possible methods that can be helpful for some system characteristics in terms of

formulating the transform functions.

1. System investigation/dynamics

The first method that can be applied is to investigate the system dynamics,

especially when the system dynamics is simple and obvious, such as first order

systems. With these system the transform functions can be simply determined

by the system dynamics.

On the other hand, when the system dynamics is not as simple as a first order

system, but may preserve some strong correlation between its input and output
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from investigation or observation, for example, the HVAC load and the outdoor

temperature has a complicated relationship, but preserve a strong correlation

that above a certain setpoint (cooling), the higher the outdoor temperature

is, the higher HVAC load would be. It is usually feasible to formulate the

transform functions based on the observation on their correlation relationship

as well as some insights on the empirical data, through a set of simple mapping

functions, including but not limited to:

• scaling: f(x) = αx

• linear combination: f(x, y) = αx+ βy

• normalization: f(x, y) = αx
y

• oscillation: f(x) = α sin(x+ θ)

• shifting: f(x(t)) = x(t− τ)

• squaring: f(x) = x2

• inversion: f(x) = 1
x

• . . .

Several mapping functions can also be combined to form a new mapping func-

tion. For example the HVAC load and outdoor temperature relationship dis-

cussed in this work utilized scaling, linear combination, as well as normaliza-

tion to formulate the transform function.

2. Sample data pre-processing

Another technique could be utilized is to process the sampled data such that

they come with a much simpler and concise form yet preserve the necessary

information. Some common methods that could be applied to sampled data

are:

• Normalization: x′ = x−E(x)
Max(x)
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• Averaging: x′ = E

• Offsetting: x′ = x + c

• Filtering: x′ = F(x)

• . . .

Where for filtering process different filters F(·) can be applied for different

purpose. One of the common application for applying a filter on sampled data

is for outlier removal, which should be applied in case of sensor failure and/or

malfunction.

3. Equilibrium

Yet another possible approaches could be utilized is to distinguish different

system behaviors, among which the one of most interest is the equilibrium

points, if there were any. Usually equilibrium points means the system can

be linearized and thus obtain a much simpler system description. Identify-

ing equilibrium points are usually done by investigating the system dynamics,

and/or visually examining the system outputs. After the equilibrium points

are identified the system can be divided into different sections based on the

these equilibrium point(s) and non-equilibrium point(s). Depending on the

significance of these identified sections, some sections may be left out for sys-

tem approximation if they are comparably insignificant to other sections.

It should be noted that the above mentioned approaches are by no means to be

comprehensive, numerous other approaches and methods can be applied, based on

a specific system setup. The following chapters shows this concept of data-driven

approximation and optimization utilized on the HVAC system problem described in

Section 2.3.
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CHAPTER 4

Prediction Model

As depicted in Figure 2.1 the proposed approach includes a prediction engine and

an optimization engine. In this chapter the development of prediction engine is

discussed. We start with the model description of the thermostat as well as the

building, followed by the modeling and approximation schemes for the indoor tem-

perature and the HVAC load. We also point out a “low load” problem associated

with HVAC system when the average usage time of running HVAC system is low e.g.

heating load in winter in low latitude locations like Arizona, and discuss a solution

for this issue.

4.1 Models

4.1.1 Smart Thermostat Model

The thermostat is responsible for HVAC control and indicates if the HVAC unit

should be “on” or “off” through the control signal, u. HVAC activity is based on a

comparison of the set point function for a given time, and the current temperature.

Although the mode of the thermostat can be set to heat or cool, for simplicity the

following description assumes the system is in cool mode, with the corresponding

inequalities to be reversed for heat mode.

The set point for the controller is denoted as r, and the internal temperature of

the home is denoted as x. A simple thermostat (in cooling mode) with cycle state

can then be defined with the following behavior:

u(t) =

 1 ρ > y(t) ∧ ¬cycle

0 otherwise
(4.1)
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This simple thermostat is state based, where cycle is set to true for some time

after u(t) switches from 1 to 0. This prevents the thermostat from switching on

immediately after it switches off. Cycle time is a necessary component of an HVAC

unit, since the internal physical components must rest periodically for efficiency

reasons.

An alternative formalism expresses the thermostat using a hysteresis is given as:

u(t) =


1 x(t) > r(t) + ε

0 x(t) < r(t)− ε

u(t
−

) otherwise

(4.2)

where u(t−) represents the previous value of u(t). If ε is sufficiently large, then the

cycle time will be an emergent property of the system (based on the behavior of the

building (plant), and the actual weather conditions).

Using the formalism of (4.2) makes for easier analysis of the system since as a

discrete mode is not needed for system state. However, pathological external factors

could still reduce the cycle time, resulting in chattering. However, we will assume

that using a value such as ε = 1◦F will prevent chattering with external temperatures

up to 130◦F. This formalism has no dependency on how r(t) is specified, and operates

merely on the incoming values of x(t) and r(t) for the specified time.

For a traditional programmable thermostat, the set point function is piecewise

constant and can be defined as:

r(t) =



r0 t0 ≤ t < t1

r1 t1 ≤ t < t2

r2 t2 ≤ t < t3

r3 t3 ≤ t < t̄

(4.3)

where t ∈ [0, t̄), and t̄ represents the end of the day. As a shorthand, we can rewrite

this as

r(t) = {(r0, t0), (r1, t1), (r2, t2), (r3, t3)} (4.4)



www.manaraa.com

59

where the series repeats. The values of t for such a thermostat are obtained from

considering only the hours of the day, where the successor for t̄ is t0 = 0. Modes

such as “Morning”, “Work”, etc., can be placed in these ranges.

In this work we propose a similar piecewise constant thermostat, but without

a requirement that the series repeat daily, with no fixed times at which set points

can change, and no constraint on the number of changes per day. An optimization

algorithm may choose to constrain number of changes per day, but that choice is not

constrained by a physical device. Then the time-varying setpoints are then stated

as

r(t) = {(r0, t0), (r1, t1), . . . } (4.5)

where rn and tn may be chosen by the external optimization engine.

In a similar fashion, a 5/2 Programmable thermostat would have sets of values

of y(t), depending on whether the day was a weekday (d ≤ 5) or weekend (d > 5),

therefore has the name 5/2, meaning five weekdays and two weekend days.

y(t) =



y0 (t0 ≤ t̃ < t1) ∧ d ≤ 5

y1 (t1 ≤ t̃ < t2) ∧ d ≤ 5

y2 (t2 ≤ t̃ < t3) ∧ d ≤ 5

y3 (t3 ≤ t̃ ∨ t < t0) ∧ d ≤ 5

y4 (t0 ≤ t̃ < t1) ∧ d > 5

y5 (t1 ≤ t̃ < t2) ∧ d > 5

y6 (t2 ≤ t̃ < t3) ∧ d > 5

y7 (t3 ≤ t̃ ∨ t < t0) ∧ d > 5

(4.6)

For sake of brevity, the case for the 7-day programmable thermostat is not shown,

though it is clearly a generalization of the function of y(t) shown in (4.6).
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4.1.2 Building Model

The internal temperature of a home is denoted as x(t), outside temperature as d(t),

and internal temperature set point as r(t). HVAC utilization over a particular time

interval [t, t+τ) is abbreviated as w(t, τ). In discrete form, the internal temperature

of the home can be expressed as

x(t+ τ) = x(t) + ∆x(t, τ) (4.7)

where the function ∆x(t, τ) represents changes to internal temperature brought

about by external energy, and HVAC system usage. ∆x(t, τ) can be expanded as

follows:

∆x(t, τ) = ∆xd(t, τ) + ∆xw(t, τ) + σ(t) (4.8)

where ∆xd(t, τ) is the change due to external energy over time τ , ∆xw(t, τ) is the

change due to HVAC system usage over time τ , and σ(·) is the disturbance attributed

to the system or the prediction process.

∆xd(t, τ) = g(x(t), d(t), τ)

∆xw(t, τ) = f(x(t), d(t), r(t), τ) (4.9)

The energy used by the HVAC system can be directly calculated over a horizon

(if ∆xw(t, τ) is known) as follows:

w(t, N) = ΣN−1
i=0 ∆xw(t+ iτ, τ) (4.10)

4.1.3 Model Imperfection

It is noted that Equation (4.8) and Equation (4.10) exclude several terms required

to model HVAC load to arbitrary precision. In (Daou et al., 2006) the HVAC

load is a combination of the temperature (sensible load) as well as humidity (latent
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load). Other disturbances such as temperature of the equipment, occupants and

their activities, etc., also factor into the HVAC load.

Concretely, the design cooling load (or heat gain) is the amount of heat energy to

be removed from a house by the HVAC equipment to maintain the house at indoor

design temperature, and there are two types of cooling loads: sensible cooling load,

and latent cooling load.

The sensible cooling load refers to the dry bulb temperature of the building and

the latent cooling load refers to the wet bulb temperature of the building. In the

summer, humidity influence in the selection of the HVAC equipment and the latent

load as well as the sensible load combined will affect the HVAC operational load.

The model we build ignores some of these terms since obtaining data to account

for these values would require a user to install and invest in equipment whose value

may not be recouped by the savings gained. Since many common thermostats have

only temperature information, we implicitly assume that the latent load is consistent

(or at least periodic) during the 7-10 day horizon we are observing, so it becomes a

lumped parameter in our model.

Even with these generous assumptions, the model described in Equation (4.8)

and Equation (4.10) is an appropriate approximation based on the limited (inex-

pensive) sensors commonly available. In the following sections we demonstrate the

feasibility of the proposed method.

4.2 Load Prediction

Based on the proposed thermostat and building models, a data-driven approach

is employed to construct a prediction model in four phases, namely data pre-

processing, approximation, regression, and prediction. In the data pre-processing

phase, sampled raw data is filtered and used to determine linear approximations

of ∆xd and ∆xw. The purpose of this phase is to prepare the raw data, remove

any outliers and/or spikes that might be introduced by the sensor, and smooth
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out the data for the next phase. In the approximation phase, a technique called

Averaged Sectional Model (ASM) is developed to capture the main characteristics

of the sampled data, by dividing the data into different sections based on their

thermal behavior. Simplification techniques such as regression is then performed

in the regression phase to build a closed-form linear relationship to estimate usage

as calculated in (4.10). Finally in the prediction phase, the approximated model is

used to calculate an estimation of future HVAC usage, and periodic recalculation

of this functions is performed to ensure the system is able to respond to deviations

in the expected weather patterns. The following sections detail the steps needed to

perform prediction of the HVAC utilization.
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Figure 4.1: (a) Raw data (72 Hours) obtained from a single-family Arizona home in
July 2011 (b) Hourly Averaged raw data of subreffig:aveRawData

4.2.1 Data Pre-processing

Data are collected from three single-family homes and one office space in Arizona

as the testbed for this work. Sampling is performed by a commercial off-the-shelf

wireless thermostat with an indoor temperature sensor and HVAC monitoring ca-

pability. Each sample obtained from the thermostat contains six data fields: indoor
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temperature (x), outdoor temperature (d), HVAC cooling set point (rc), HVAC

cooling usage (wc), HVAC heating set point (rh), HVAC heating usage (wh). For

brevity, only cooling set points are discussed, and we set r = rc and w = wc for the

rest of the discussion. The sampled temperatures and set points are in Fahrenheit

while the unit for HVAC usage is in percentage, specifically 0% indicates the HVAC

is OFF while 100% indicates the HVAC ON. Figure 4.1 shows a horizon of three

days of raw and hourly-averaged data obtained from one of the residential homes in

July 2011. Information pertinent to heating (rhand wh) are omitted from the figure.

From the data obtained (Figure 4.1) several observations can be made. Firstly,

the indoor temperature correlates closely to the cooling set point (r), as is the

goal of an HVAC system. Secondly, in most instances of HVAC utilization the

HVAC is either (nearly) fully ON (98%) or (nearly) fully OFF (10%). Upon brief

analysis, one can observe that the HVAC runs for a set period of time to “drop”

the indoor temperature at/below the cooling set point, then turns off until the

temperature reaches a threshold at/above the cooling set point before repeating the

cycle again. Thirdly, a few outliers exist in the raw data, due to sensor inaccuracy

and/or missed sensor reading due to a request time out. Lastly, the time series of

indoor temperature and set points can be roughly divided into three main categories,

namely, Equilibrium, Ramp-up and Ramp-down. Equilibrium points are where the

indoor temperature closely correlates to the set point, i.e. the indoor temperature

is “clapped” to the set point because of HVAC operation. Ramp-up correspond

to areas where the set point changes to a higher temperature and results in near

zero HVAC utilization (in cooling mode). In these areas the indoor temperature

will slowly drift to the new higher set point, based on the temperature difference

between indoor and outdoor temperature. On the other hand, the Ramp-down

periods reflect time periods where the set point is lowered. Accordingly, the HVAC

utilization nears 100% utilization as the HVAC system attempts to quickly meet

this new set point value. Each of these categories can be observed in Figure 4.1.
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Based on these observations two major simplification techniques, namely sec-

tioning and averaging, are applied to the raw data to facilitate the data analysis

process, as described below.

The sectioning procedure aims at classifying the different categories of the data

(Equilibrium, Ramp-up, Ramp-down) and throw away insignificant samples that

might be too short in time. This process is two-fold, (i) raw data is divided into

regions, based on x and r, (ii) within each region if sufficient consecutive samples

exist before the region changes, the data is utilized for further considered, otherwise

this data is removed. Due to the intrinsic difference between Equilibrium points

and Ramp-up/Ramp-down points, the corresponding simplification techniques are

slightly different. For Equilibrium points, data samples for determining w(·) come

from regions where |x − r| < T ∗, indicating the internal temperature samples are

in a “uniform temperature region” (i.e. equilibrium), being held there by HVAC

utilization while disturbed by outside temperature. At least N∗ consecutive samples

must exist within the region to be utilized. On the other hand, the Ramp-up/Ramp-

down samples for determining w(·) come from regions where |x−r| > T ∗, indicating

the internal temperature samples have “drifted away” from the specified set points.

Specifically, x−r > T ∗, indicating the Ramp-down points and r−x > T ∗ indicating

the Ramp-up points. This process is depicted in Figure 4.2.

After obtaining valid regions, an averaging process is then applied on these re-

gions. For uniform regions, the average of all data fields (x,d,r,w) within that region

producing an Averaged Sectional Model for the equilibrium points. For example, a

uniform region is identified from 4900 to 4970 (min) with an average HVAC usage

of 13.03%, average indoor temperature of 80.43◦F, average outdoor temperature of

77.44◦F and and average cooling set point of 80◦F. After scanning all equilibrium

regions, the same process is again applied to all the Ramp-up and Ramp-down re-

gions to determine their corresponding Averaged Sectional Model. The obtained

Averaged Sectional Model is also depicted in Figure 4.2.
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Figure 4.2: Averaged Sectional Model for Equilibrium sections

It should be noted that by performing the averaging techniques, the outliers

resides in the raw data can be effectively removed and smoothed out.

By using this method, the prediction engine is now able to translate the dis-

crete on/off nature of the HVAC usage into a more meaningful percentage, while

maintaining a finer-grained approximation of the relationship between outdoor tem-

perature and the HVAC utilization required to maintain a given set point. Moreover,

by utilizing the averaging technique there is a reduction in the “bumping” effect of

HVAC usage due to the cycling ON and OFF periods, thus produce a quantitative

metric of HVAC usage of a section.



www.manaraa.com

66

4.2.2 Approximation Schemes

Following the initial data pre-processing is the approximation phase, where a linear

relationship between temperature and HVAC utilization for the three categories are

being established, which forms the foundation of the prediction engine in the pro-

posed framework. In the following sections we describe in details the methodology

of building up this approximation scheme for each section category.

Equilibrium Section

Recall from (4.8) that changes in temperature is a function of the changes due to

external energy (∆xd) and HVAC system usage over time (∆xd) as well as distur-

bance, σ. If the system is in equilibrium (where |x(t)− r(t)| < ε for all t ∈ [t0, t1]),

and the disturbance is taken to be Gaussian, we can take the sum of the temperature

changes over the span [t0, t1], with t1 − t0 = Nτ , and N is a positive integer:

ΣN−1
i=0 ∆x(t0 + iτ, τ) = ΣN−1

i=0 ∆xd(t0 + iτ, τ)

+ΣN−1
i=0 ∆xw(t0 + iτ, τ) + 0 (4.11)

where the sum of the (Gaussian) disturbances of the time frame can be approximated

as zero. In addition, if the system is in an uniform temperature region, we can say

that x(t0) ≈ x(t1), which implies that ΣN−1
i=0 ∆x(t0 + iτ, τ) ≈ 0, i.e.,

ΣN−1
i=0 ∆x(t0 + iτ, τ) ≈ 0 = ΣN−1

i=0 ∆xd(t0 + iτ, τ) + ΣN−1
i=0 ∆xw(t0 + iτ, τ) (4.12)

We approximate the change in temperature (usually an increase) over a short time, τ ,

as a linear relationship between the difference in the outside and inside temperature

with α ∈ R:

∆xd(t0, τ) = α(d(t0)− x(t0))τ (4.13)
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A corresponding decrease in temperature (over a short time) occurs when the HVAC

system is active, namely using the following approximation with β ∈ R:

∆xw(t0, τ) =


−β(d(t0)− x(t0))τ x(t0) > r(t0) + ε

0 x(t0) < r(t0)− ε

∆xw(t0 − τ, τ) otherwise

(4.14)

The discontinuous nature of ∆xw makes analysis difficult to do in closed form.

Fortunately, the knowledge that ∆xw may be “off” for one or more time spans of

length τ permits the addition of a utilization function during equilibrium (EQ) w̃EQ:

∆xw(t0, τ) = w̃EQ(d(t0), r(t0)) (−β(d(t0)− x(t0))τ) (4.15)

where w̃EQ ∈ [0, 1] relates how often the HVAC must be “on” based on the out-

side and set point temperatures at t0. Typically this utilization function is upper

bounded by physical equipment constraints, such as required time for a compressor

to rest between executions. Rewriting (4.12):

ΣN−1
i=0 ∆xd(t0 + iτ, τ) = −ΣN−1

i=0 ∆xw(t0 + iτ, τ)

ΣN−1
i=0 α(d(t0 + iτ)− x(t0 + iτ))τ = ΣN−1

i=0 w̃
EQ(d(t0 + iτ), r(t0 + iτ))β(d(t0 + iτ)− x(t0 + iτ))τ

(4.16)

This formula is also clearly difficult to analyze in closed form, so a convenient approx-

imation is not to consider the time indexed values of x, d, r, but rather the average

differences between them. Thus, let t∗ = N−1ΣN−1
i=0 (d(t0 + iτ) − x(t0 + iτ)), and

assume (given the uniform temperature region that puts the system in equilibrium)

that r(t) = x(t)∀t ∈ [t0, t1]. Since t∗ is a constant, we have the following:

αt∗ = βt∗ΣN−1
i=0 w̃

EQ(d(t0 + iτ), x(t0 + iτ))

α = βΣN−1
i=0 w̃

EQ(d(t0 + iτ), x(t0 + iτ))
(4.17)

One final linear approximation defines a model for w̃EQ with γ ∈ R:

w̃EQ(d(t0), r(t0)) = γ(d(t0)− r(t0)) = γ(d(t0)− x(t0)) (4.18)
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using r(t) = x(t), this give the following approximation of utilization:

w̃EQ(d(t0), r(t0)) = γt∗ (4.19)

Thus, for a given t∗ a utilization is expected, and the pair are linearly related. As

stated previously, this approach has utilized the assumption of uniform temperature

region (where r(t) = x(t)), so utilization definitions are valid only for a specific set

point, meaning that for each r(t) value, a new linear relationship must be defined.

Fortunately r is typically set at integer values between 60 and 85 (for Fahrenheit

thermostats), so the number of required linearization is not excessive.
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Figure 4.3: Illustration of ramp sections (a) Ramp Up section (b) Ramp Down
section

Ramp Regions

The Ramping regions have different thermal behaviors as compared to the Equilib-

rium regions. Figure 4.3a provides a Ramp-up example. The set point was increased,

yielding a period of little to no HVAC utilization as the indoor temperature increases

due to the higher outdoor temperature. In this region, the HVAC prediction engine

is conceded with the time it takes for the temperature to “float” to the higher value.
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From (4.8) the change in temperature is a function of the changes due to external

energy and HVAC system usage over time (4.9) as well as disturbance, σ. When the

system is in a Ramp-up region the HVAC utilization per unit time T0 is a constant

w̃RUT0 = w̃
RUT0
0 , ideally w̃

RUT0
0 = 0, and this can be calculated out from averaging

the HVAC usage over the Ramp-up region. What is of interest is the transition

time TRU required. Similar to the analysis of Equilibrium sections, we can take the

sum of the temperature changes over the span [t0, t0 + TRU ], with TRU = Σiτ(i),

τ(i) ∈ R, i ∈ N+ as:

Σi=0∆x(t0 + iτ(i), τ(i)) = Σi=0∆xd(t0 + iτ(i), τ(i))

Approximating the time τ(i) needed for the indoor temperature x(i) to transition

to the new setpoint r(i) based on the current outdoor temperature d(i) yields:

τ(i) = θRU((d(i)− x(i)), (r(i)− x(i))) (4.20)

A similar analysis can be utilized for Ramp-down regions, except the HVAC

would operate near full capacity to decrease the indoor temperature to the new

set point. Figure 4.3b provides an example of Ramping-down. Again, the HVAC

utilization would be a constant w̃RDT0 = w̃
RDT0
0 , theoretically w̃RD0 = 100%, and the

approximation of transition could be determined by:

τ(i) = θRD((d(i)− x(i)), (r(i)− x(i))) (4.21)

Thus, based on this analysis the HVAC usage given ramping up and ramping

down regions can be determined as follows:

w̃RU = w̃RUT0 × τ(i) = w̃RUT0 × θRU(d(i), r(i), x(i)) (4.22)

w̃RD = w̃RDT0 × τ(i) = w̃RDT0 × θRD(d(i), r(i), x(i)) (4.23)
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4.2.3 Data Regression

The next step is then to build a relatively accurate model for HVAC usage esti-

mation, based on the sampled data. The approaches taken in this work is through

regression, as described in the following.

Equilibrium Regions

For equilibrium sections the HVAC utilization function w̃EQ needs to be estimated.

For this purpose, the averaged data for each section (denoted by i) from Averaged

Sectional Model discussed in Section 4.2.1 is grouped (denoted by j) based on their

set point r. Figure 4.4a illustrates the relationship of wij and t∗ij where rj = 74◦F

for data sampled in July, 2011. Note that each point in the graph represents a

section i. The x-axis denotes t∗ij while the y-axis is wij normalized by t∗ij, denoted as

wiNj. This plot provides an intuitive impression that the relationship of wij and t∗ij

is quasi-linear, indicating the possibility of utilizing a linear regression within the

regression kernel. The regression method is applied to each group. The normalized

usage wN is used, thus for group j the estimation would be:

w̃iNj = f̃j(t
∗i
j) (4.24)

We denote the target normalized HVAC usage of group j as a column vector

wNj = [w1
Nj, w

2
Nj..., w

m
Nj]

T , m is the number of sections in group j, and the cor-

responding estimation a column vector w̃Nj = [w̃1
Nj, w̃

2
Nj, ..., w̃

m
Nj]. The purpose of

regression is then to find a suitable function f̃j that minimize ‖w̃Nj −wNj‖2 for all

groups ∀j ∈ G.

The HVAC prediction engine similarly employs linear regression to formulate the

estimation function f̃j. Specifically, w̃Nj = f̃j(t
∗
j, a) = Xjθj, where Xj is the m×n

training data matrix for group j is constructed as follows:
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Figure 4.4: Raw data selected from a 30 day period, when r = 74◦F. (a) Linear
regression of equilibrium point. (b) Estimation of time to complete ramp region.

Xj =



ft1 ft2 ... ftn

s1 x11 x12 ... x1n

s2 x21 x22 ... x2n

... ... ... ... ...

sm xm1 xm2 ... xmn


where each row represents an individual section (si) and the columns reflect the

features (ftj) of each section. The first column of each row is set to one to represent

the bias offset. The minimization problem then becomes: arg minθj ‖Xjθj −wNj‖2
where θj is a n × 1 vector indicating the regression parameters. After solving the

minimization problem the estimation of a single section can be calculated as:

w̃iNj = X iθj = ftij1θj1 + ftij2θj2 + ...+ ftijnθjn (4.25)

Within this work, the training data is chosen as ftij1 = 1, ftij2 = t∗i, and othersj = 0,

i.e. Xj will be a m× 2 matrix. Figure 4.4a shows the linear regression result.
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Ramping Regions

Conversely, in the Ramp-up/down sections the HVAC utilization is constant. Thus,

the HVAC Prediction Engine is responsible for the estimation of the transition time

to either ”float” to a higher set point or “drop” the temperature to a lower set point.

A similar approach is taken for these ramping sections, where relationship between

transition time TR{U,D} and t∗ are considered for each set point group. Figure 4.4b

shows the relationship for rj = 74◦F . Similar to the equilibrium sections, the

ramping section samples also exhibit quasi-linear properties. Thus a linear regression

method can also be utilized to to estimate the transition time:

T
R{U,D}
j = θ̃j(t

∗i
j) (4.26)

The HVAC utilization estimation for the ramping sections is a linear relation-

ship based on the estimated transition time TR∗ and the section HVAC utilization

constant w̃R∗0 :

w̃R{U,D} = g(TR{U,D}, w̃
R{U,D}
0 ) (4.27)

Outlier detection

It could happen that the ASM data points may have some outliers too which could

represent unusual or extreme weather conditions, or other abnormal situations such

as humidity change etc. In this case the linear regression might get affected if running

directly with these outliers in the data set. Therefore, outlier detection and removal

procedure should be deployed. In this work, the outlier removal is conducted by a

Principle Component Analysis (PCA) procedure followed by a statistical process.

The PCA procedure identifies the principle component or principle axis in the data

while the statistical process removes any data points that is “far away” from this

axis. Readers could refer to (Abdi and Williams, 2010; Jolliffe, 2005) for more details
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Figure 4.5: Outlier removal

in PCA.

Concretely, the distance of the test data point to the principle axis is utilized to

determine whether this point is an outlier or not. This is done by calculating the

Euclidean distance defined as:

√
Σn
i=1(xi − yi)2 (4.28)

where i indicates the different component directions, xi is the tested point and yi

represents the mean of the sampled data.

An outlier is then identified if the defined Euclidean distance is above a certain

threshold after normalization.

An example of this process is shown in Figure 4.5 where the ASM data points

are plotted as “+”, where outliers in these data points are detected and indicted by

an overlaid “o”.
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Artificial Disturbance

To account for natural disturbances such as changes in the outdoor temperature or

human activity within the building, an artificial disturbance is incorporated within

the regression result. The artificial disturbances is in the form of a zero mean

Gaussian white noise, which is additive to the estimation function:

w̃EQi

Nj = f̃j(t
∗i
j, aj) + gwn(0, σ) (4.29)

w̃
R{U,D}i
Nj = g(θ̃j(t

∗i
j, aj), w̃

R{U,D}
0 ) + gwn(0, σ) (4.30)

where gwn(0, σ) is a zero mean Gaussian white noise with variance= σ2. It is to

be noted that the periodicity and daily load profile are already integrated in this

formation by differentiating the various set point temperature groups j, and by

grouping the data point within the same set point temperature, therefore the set

of discrete approximations would account for different load profile situations. To

improve this model of occupant behavior would require additional information or

sensors, so our work makes this somewhat coarse approximation. However, the

results show that the approximation is useful, as we show next.

4.2.4 Prediction Formulation

Given (4.29), HVAC usage can be predicted in Equilibrium regions if the difference

between outdoor temperature and the set point temperature is know. The outdoor

temperature can be obtained from weather forecasting services. The linear regression

produces normalized estimation functions f̃j for each group j ∈ G. The estimation

of future outdoor temperature d(t) = d(nT ) is obtained from a weather forecasting

service, and the indoor temperature set point r(t) = r(nT ) is obtained from the user.

For n ∈ N and T in the sample time frame, the normalized estimation function f̃j

is utilized where group j is chosen to have the same set point temperature as input:
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rj = r(n). Next, the output is denormalized with respect to t∗j(n) to obtain the

percentage of HVAC usage w̃j(n) at sample n.

Similarly, given (4.30), HVAC usage can be predicted for Ramping regions if the

difference between outdoor temperature and the set point temperature is known, as

well as the based on the nominal HVAC usage for the transitions w̃
R{U,D}
0 for each

group. As in the Equilibrium regions, the linear regression for Ramping regions will

produce estimation functions θ̃j for each group j ∈ G and provides an estimated

transition time, as well as the nominal HVAC usage w̃
R{U,D}
0j for that group. By

utilizing the weather forecasting information and the user defined set point value,

equation(4.30) is able to predict HVAC usage for the ramping regions.

4.2.5 Adaptation

Overtime the characteristics of the outdoor-set point relationship may be affected

by external changes such as changes in season, abnormal weather patterns, among

others. These disturbances will lead to inaccuracy, therefore the estimation functions

f̃j,θ̃j adapt as the observed data obtained changes. Two regression update policies

are utilized, namely a fixed update rate policy and an error threshold update policy.

The fixed update rate policy mandates that the regression is conducted at a

fixed time interval τup specified by the algorithm. This method would ensure the

regression is updated every τup time, to ensure the estimation functions continue to

reflect the underlying system. Conversely, the error threshold update policy only

triggers the regression update if an error between the predicted HVAC usage at time

t and the observed HVAC usage is greater than a predefined error threshold T̃ :

ẽ = |w̃(t)− w(t)| > T̃ (4.31)

These policies work together to ensure the estimation functions reflect the underlying

system while avoiding unnecessary regression updates.
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4.3 Low Load Problem

The previous stated approach for HVAC load prediction is able to obtain a rea-

sonable accuracy ( 90%) when the HVAC load demand is high. For example, the

HVAC cooling load in the hot summer in Arizona, or heating load in a cold winter

in Minnesota. However, when the demand of HVAC operation is sparse, the above

approach may face a challenge of estimating an accurate HVAC load. For exam-

ple, the HVAC heating load in the winter in Arizona is approximately 12%, and

temporally sparse. This is basically due to the fact that the indoor temperature

is almost in between the user set heating and cooling points, therefore no HVAC

operation is needed. This artifact will affect the previous approaches severely be-

cause the sparse nature will lead less or even no training data for the approach to do

the regression, therefore an inaccurate model might be developed, and the following

prediction would be incorrect. We call this problem a “low load problem”, where

the load factor of HVAC operation is low.

To overcome this problem, a revised framework for HVAC load prediction is

developed.

4.4 Load Prediction Revised

The revised HVAC load prediction scheme consists one more component, namely

Indoor Temperature Prediction engine, to provide some insights on the possible

HVAC load factor. Concretely, this component would first make an estimation on

the future indoor temperatures, where this estimation is feed to the HVAC load pre-

diction engine. With this new information, the HVAC load prediction engine would

then revise the prediction result based on the estimated indoor temperature. More-

over, a new type of section denoted as “Free section” will be recognized along with

Equilibrium, Ramp Up and Ramp Down sections. In Free section, the estimated

indoor temperature fully comply with the setpoint temperature schedules, i.e. the
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estimated indoor temperature is below the cooling setpoint temperature and above

the heating setpoint temperature, therefore no HVAC operature is needed in these

Free sections.

Generally, the revised approach is comprised of two phases. In the first phase

the indoor temperature of the target building is predicted using an ARMAX model,

based on weather forecasting, user defined setpoint temperatures and previous in-

door temperatures. In the second phase the heating/cooling load is predicted based

on the predicted indoor temperature, and linearized to create the HVAC predic-

tion model based on the three sections as described in Averaged Sectional Model,

excluding the Free sections. The details steps are described in the following.

4.4.1 Indoor Temperature Prediction

In the first phase an Auto Regressive Moving Average with eXogenous inputs (AR-

MAX) model is used to predict the indoor temperature. The predicted indoor

temperature would then provide a reference for HVAC load prediction in a later

stage.

A discrete time linear ARMAX model is based on a simple linear difference

equation:

y(t) =− (a1y(t− 1) + ...+ anay(t− na))

+ b1u(t− nk) + ...+ bnb
u(t− nk − nb + 1)

+ c1e(t− 1) + ...+ cnce(t− nc) + e(t)

=− Σna
n=1any(t− n) + Σnb

m=1bmu(t− nk − nb + 1)

+ Σnc
q=1cqe(t− q) + e(t)

where y(t) is the estimated output (indoor temperature), t denotes time, an, bm, cq

are unknown system parameters, u(t) denotes the input, which could be a matrix

when multiple input signals are chosen, na, nb, nc are orders associated with output

y(t) and inputs, nk is the number of input samples that occur before the input affects
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the output, also called the dead time in the system and e(t) is unknown system error.

In this work the indoor temperature is estimated and serves as the model output,

while the model inputs are outdoor temperatures (composed of sampled outdoor

temperature history data as well as weather forecasting information) as well as the

user defined setpoint temperatures.

The order of the ARMAX inputs, i.e. the value of na, nb, nk, nc, should be

determined using the parsimony principle, “out of two or more competing models

which all explain the data well, the model with the smallest number of independent

parameters should be chosen” (Söderstrom and Stoica, 1989).

In this work, a range of values for na, nb, nk, nc were evaluated, with each value

ranging from 1 to 5. Each combination of the system parameters was estimated using

the MATLAB System Identification Toolbox.Data used for the system training and

verification process are obtained from the first 70% of each month’s sampled data.

The system model that results in the best model fit would then be used to represent

the model.

4.4.2 Load Prediction

After the indoor temperature prediction phase, the same techniques discussed in

Section 4.2 will be used to establish the ASM for the building. However, the load

prediction formula would be slightly different from previous ones, where two al-

ternatives to the prediction formula can be used, namely model modification and

post-process modification.

Model Modification

The model modification approach involves modifying the regression model for HVAC

load prediction. More specifically, a new input, the estimated indoor temperature,

is added to the regression model, therefore factoring in the new information.

Based on this approach, the regression model described in Section 4.2.3 will
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have some minor modifications. Concretely, the regression model Equation (4.32)

will have the indoor temperature estimation x̂ as another input, and rewritten as:

w̃iNj = f̃j(t
∗i
j, x̂) (4.32)

where x̂ can also be a linear combination of indoor temperature and setpoint

temperature r, such as x̂− r, etc.

Post-process Modification

Another way to factor in the indoor temperature estimation is through a method

called post-process modification. Intuitively, the effect of indoor temperature on the

HVAC load follows an “indicator” fashion, which can be described a set of logic as

following:


If x > rh & x < rc : HVAC = 0

If x < rh : HVAC = 1

If x > rc : HVAC = 1

(4.33)

where

HVAC =

 0 :HVAC on

1 :HVAC off
(4.34)

indicating the operation status (ON/OFF) of the HVAC system, based on the

indoor temperature.

Thus HVAC load prediction can be obtained by first calculating the original

linear regression model in Section 4.2.4, then apply the above logic to perform

prediction modifications.

Because of the discrete and binary nature of this indicator effect, the post-process

modification is a better solution for generating the HVAC load prediction than the
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model modification approach, since the former takes similar binary logic while the

later still requires a linear model.

Load Prediction Process

The final load prediction with indoor temperature estimation then can be formulated

as the work flow depicted in Figure 4.6.

Given a prediction horizon, the indoor temperature of that horizon is first es-

timated using the ARMAX model described in Section 4.4.1. Secondly, based on

the indoor temperature prediction, coupled with the user defined target set point

temperature, the four classes of sections can be extracted. Free sections are first

identified by comparing the estimated indoor temperature and the target setpoint

temperature. Next, the start time of Ramp-Up and Ramp-Down sections are iden-

tified by scanning for changes in the setpoint temperature. The end time of these

ramping sections however are unknown and need to be estimated. Next, the HVAC

usage prediction for Equilibrium sections is carried out using Equation (4.29) as a

baseline estimation, with free section HVAC usage set to zero. Finally the transi-

tion time of ramps sections are estimated using Equation (4.30), and the baseline

estimation is refined by the nominal HVAC usage in these transition regions.
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Figure 4.6: HVAC load prediction work flow
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CHAPTER 5

Optimization Engine

The HVAC prediction engine described in the previous chapter enables users with the

ability to inject a variety of set points to discern the resulting HVAC energy and cost,

providing users with accessible metrics to understand the long-term consequences of

these decision. Alternatively, the HVAC prediction engine can be coupled with an

optimization engine which enables an end user to specify a cost constraint (i.e., a

cost setpoint), and produce the corresponding optimized schedule which adheres to

the user defined cost constraint, while striving to minimize the difference between

the actual and desired user defined internal set point. By integrating an optimization

component within the framework, a closed loop system is created in which users no

longer have to determine the set point schedule. Also, the framework can adapt to

the environment and take advantage of time-of-use pricing policies (Tucson Electric

Power (TEP), 2012b) biasing HVAC utilization to non-peak times, and perform

temperature-cost trade-offs. Moreover, as changes in the platform or predicted

weather are detected, the optimization component can dynamically adapt the set

point schedule.

In this chapter, we discuss the approach and implementation of such an opti-

mization engine, based on a slight modification of classic minimal cost network flow

problem. In addition, we illustrate solving this problem by using a “off-the-shelf”

optimization package by providing an example.
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5.1 Approach

5.1.1 Problem Formulation

As described previously, the optimization problem can be restated as finding the

optimal schedule of set point temperatures S(t) over a time horizon t ∈ (t0, t+T ] such

that the optimized set points are close to the user-specified set points, while meeting

the user-specified cost constraint. Minimizing a cost function given user constraints

can be reduced to a linear programming problem. While many algorithms exist

for efficiently solving this class of problems (Ahuja et al., 2003), we formulate the

set point scheduling problem as a modified minimum cost network flow problem

(Figure 5.1), with the details stated as following.

Minimum Cost Network Flow
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Figure 5.1: (a) Typical Network Flow Model (b) Illustration of Constructed Network
Flow Model for Cost Limited Setpoint Optimization

Figure 5.1a illustrates a typical network flow model setup for solving a minimum

cost flow problem. The formulation of this problem can be stated as following

(Ahuja et al., 2003): Let G = (N,A) be a directed network defined by a set N

of n nodes and a set A of m directed arcs. Each arc(i, j) ∈ A has an associated

cost Cij that denotes the cost per unit flow on that arc. We associate with each

arc(i, j) ∈ A a capacity Uij that denotes the maximum amount that can flow on
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the arc and a lower bound lij that denotes the minimum amount that must flow on

the arc. We associate with each node i ∈ N an integer number b(i) representing its

supply/demand. If b(i) > 0, node i is a supply node; if b(i) < 0, node i is a demand

node with a demand of −b(i); and if b(i) = 0, node i is a transshipment node. The

decision variables in the minimum cost flow problem are arc flows and we represent

the flow on an arc(i, j) ∈ A by xij. The typical minimum flow problem then would

be formulated as:

Minimize
∑

(i,j)∈A

Cijxij (5.1a)

subject to ∑
{j:(i,j)∈A}

xij −
∑

{j:(i,j)∈A}

xji = b(i), for alli ∈ N (5.1b)

lij ≤ xij ≤ Uij, for all(i, j) ∈ A (5.1c)

The constraints in Equation (5.1b) is referred as mass balance constraints, where

the first term represents the outflow of the node i and the second term represents

the inflow. If the node is a supply node (denoted as S) then b(i) > 0 would hold

true, if the node is a demand node (denoted as T ) then b(i) < 0 would hold true,

otherwise the node would be a transshipment node where the outflow equals inflow,

i.e. b(i) = 0. The amount of flow on arc(i, j) should also satisfy the minimum

and maximum limit of that arc, which is referred as flow bound constraints as in

Equation (5.1c).

Modified Minimum Cost Network Flow

Next, we will illustrate how to formulate the cost constrained setpoint optimization

problem as a modified minimum flow problem, by first structuring the nodes and

arcs of the network, defining the cost functions, and adding additional constraints.

Consider a node matrix A with M × N nodes, as shown in Figure 5.1b, where

M represents the total number of all available setpoints at each decision point (con-
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trolled by the optimization granularity, equals to the sampling rate by default), the

value of each node in one column are denoted as ai and it’s duplicated for every

column. N represents the total length of time scope for optimization, i.e. a node

{Aij, (i ∈ M, j ∈ N)} represents a setpoint node at time j with value ai. On the

other hand, an arc(Ai1j1 , Ai2j2) linking two nodes Ai1j1 and Ai2j2 represents a set-

point transition, i.e. setpoint changed from ai1 at time j1 to ai2 at time time j2. If

ai1 = ai2 the setpoint value is not changed, we call this an equilibrium arc, ifai1 > ai2

or ai1 < ai2 the setpoint value is shifted to a new setpoint, we call them ramp-down

or ramp-up arcs respectively. Since the ramp sections would take some non-zero

time for the indoor temperature to transit from the current setpoint to new set-

point, as stated in Section 4.2.2, when constructing these arcs the previous-stated

ramp analysis techniques would be employed to estimate the time needed for the

setpoint value transition, which is then reflected in the network by connecting the

corresponding nodes in the right column. For example, in Figure 5.1b at t(1), if

the setpoint would transit from a1 to a2 it would take 2 time units (hours in this

example), therefore the arc would connect the node A11 with node A32 in the third

column, rather than A22 in the second column. Moreover, we put one constraints

{arc(Ai1j1 , Ai2j2) : j1 6= j2} on the arcs based on the assumption that only one set-

point can be set to at one time, therefore no arcs exist between nodes within the

same column. The mass of flow on each arc is the variable that we will optimize

over, and is an indicator variable xij defined as,

xij =

 1 select arc(i, j)

0 otherwise
(i, j) ∈ A (5.2)

The goal of the optimization is to provide the users a setpoint schedule that is

close to their desired or preferred temperature while keep the cost below the specified

limit. Therefore we define the distance between the user-preferred setpoint Desiredj

at time j and the actual selected (by optimization engine) setpoint Setij on node

Aij as Dij = abs(Desiredj − Setij). The monetary cost on the other hand, is
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associated with arcs, where the cost of an arc(i, j) between node i, j is defined as

the the predicted cost of HVAC usage Cij and obtained from the previous prediction

engine as in Equation (4.29) and/or Equation (4.30) in Section 4.2.4, which can be

rewritten as Cij is a function of the outside temperature x, setpoint r and Gaussian

White Noise.

Cij = g(u(j, t)) = g(f(Set(t, j), wT (t, j), gwn(0, σ))) (5.3)

Another constraint that is introduced to the optimization engine is the number of

transitions constraint, i.e. how many times at maximum that the optimizer can

reset the setpoint to a new value that is different from it’s previous value. This

constraint is introduced to emulate the real-world setpoint schedule strategy from

users where the user would set the temperature to a new point only a few times a

day, for example in the “morning”,“working” and “sleeping” scheme the setpoints

only change between these three different time span. And this constraint would

avoid the artifacts that the optimization may result in a “bumping” schedule where

the setpoints change too frequently. The number of transitions tran is calculated

as following:

tran =
∑

(i,j)∈A

xijtransit(i, j) (5.4)

transit() is a function to check if the setpoint value of node i is different from node

j:

transit(i, j) =

 0 value(i) = value(j)

1 otherwise
(i, j) ∈ A (5.5)

and value(i) is just the setpoint value associated with node i:

value(Amn) = a(m), Amn ∈ A (5.6)

With the components, the setpoint optimization problem can be formulated as
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the following,

Minimize
∑

(i,j)∈A

Dijxij (5.7a)

subject to ∑
(i,j)∈A

Cijxij ≤ B (5.7b)

tran =
∑

(i,j)∈A

xijtransit(i, j) ≤ TR (5.7c)

∑
{j:(i,j)∈A}

xij −
∑

{j:(i,j)∈A}

xji = b(i), for alli ∈ N (5.7d)

lij ≤ xij ≤ Uij, for all(i, j) ∈ A (5.7e)

Where Dijxij generates the temperature difference (penalty) and Cijxij generates

the cost of selecting arc(i, j). B specifies the end user defined cost constraint.

Equation (5.7b) ensures the monetary cost of the optimized setpoint would be within

the user specified limit. TR in Equation (5.7c) is the maximum number allowed for

setpoint transitions. The algorithm used to generate the network is depicted in

Algorithm 1.

The optimization task can be described as follows: at each time step t, new

sensor readings and up-to-date monetary cost as well as number of transitions are

gathered and utilized to update the corresponding constraints B and TR. The new

sensor reading may utilized by the prediction engine to update the linear regression

process as stated in Section 4.2.5. Then all nodes within a given time scope are

considered and the corresponding arcs are generated by Algorithm 1. For each node

and the arcs the distance and cost values for are determined, as well as the number

of the transitions.
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Algorithm 1 Network Flow Model Generation

for i=1 to n do

for j=1 to m do

calculate Dij for node Aij

for k=1 to m do

if value(Ai,j) == value(Ai+1,k) then

create arc(Ai,j, Ai+1,k)

calculate CAi,j ,Ai+1,k
for arc(Ai,j, Ai+1,k)

else

estimate ramp time t

create arc(Ai,j, Ai+floor(t),k)

calculate CAi,j ,Ai+floor(t),k
for arc(Ai,j, Ai+floor(t),k)

end if

end for

end for

end for
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5.1.2 Solving Minimum Cost Network Flow, by Example

In this work, we utilize the CPLEX tool from IBM to solve the network flow prob-

lem. The CPLEX is a powerful tool for solving mathematical programming prob-

lems including linear programming, mixed integer linear programming, quadratic

programming, and mixed integer quadratic programming etc. A quick example of

using CPLEX is as following:

Suppose the problem to be solved is

Maximize x1 + 2x2 + 3x3 + x4 (5.8a)

subject to

− x1 + x2 + x3 + 10x4 ≤ 20 (5.8b)

x1 − 3x2 + x3 ≤ 30 (5.8c)

x2 − 3.5x4 = 0 (5.8d)

Bounds

0 ≤ x1 ≤ 40 (5.8e)

0 ≤ x2 (5.8f)

0 ≤ x3 (5.8g)

2 ≤ x4 ≤ 3 (5.8h)

Integers (5.8i)

x4 (5.8j)

The corresponding CPLEX model can be created and solved in MATLAB as in

Listing 5.1:

% I n i t i a l i z e the CPLEX ob j e c t

cp l ex = Cplex ( ’mipex1 ’ ) ;

cp l ex . Model . s ense = ’maximize ’ ;

% Use addRows to populate model
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cp l ex . addCols ( [ 1 ; 2 ; 3 ; 1 ] , [ ] , [ 0 ; 0 ; 0 ; 2 ] , [ 4 0 ; i n f ; i n f ; 3 ] , ’CCCI

’ ) ;

cp l ex . addRows(− i n f , [−1 1 1 10 ] , 20) ;

cp l ex . addRows(− i n f , [ 1 −3 1 0 ] , 30) ;

cp l ex . addRows( 0 , [ 0 1 0 −3.5 ] , 0) ;

% Optimize the problem

cp lex . s o l v e ( ) ;

Listing 5.1: CPLEX code example

The three addRows lines can be merged into one line by populating the constraints

in the matrix format, specifically, we can define

l h s = [− i n f ;− i n f ; 0 ] ;

rhs = [ 2 0 ; 3 0 ; 0 ] ;

A = [ −1 ,1 ,1 ,10 ;1 , −3 ,1 ,0 ;0 ,1 ,0 , −3 .5 ] ;

Listing 5.2: CPLEX code example: Alternative constranit matrix

then the constraints can be rewritten in one line as:

cp l ex . addRows( lhs ,A, rhs ) ;

Listing 5.3: CPLEX code example: Alternative constranit

Example Network

CPLEX can be used for the HVAC network flow problem described in our work. For

the sake of simplicity, we use a simple network flow constructed in Figure 5.2 as an

example. Firstly, we will first show how to model the target function and the cost

constraint as well as the balance function from this model, then we will show how

to add the transition constraint by adding augmented variables to the model such

that it is in compliance with the network flow model described in Equation (5.7).
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Figure 5.2: A simple network example

Suppose the network is constructed as in Figure 5.2, where at each time step

there are only two possible set point candidates, 74F and 78F , and there are total

three time steps t(1), t(2) and t(3). The nodes are numbered in a sequential way

from node(1) to node(6), together with a source node node(S) and a sink node

node(T ). The user wants to keep the temperature to Desiredij = 74F for all

the time i, j ∈ A, therefore the associated distance or Dij can be calculated as

Dij = abs(Desiredij − Setij), which is annotated on each node. The capital cost

of choosing each arc is computed as Cij and the time each arc needs is computed

as Tij. For a better descriptive purpose we reformat the variables xij into a column

vector xi. Suppose we are constructing the arc from node(1), which is set to 74F ,

to point to a new set point at 78F , assume we have calculated the capital cost of

this arc will be 1 dollar and the time needed for the transition is 2 hours, therefore

the arc is constructed as connecting node(1) at t(1) to node(6) at t(3), as depicted

in the figure. Moreover, we denote the number of nodes in each time layer as m, the

total number of nodes in the network as M , and the number of arcs as N , in this

example m = 2, M = 8 and N = 12

First let’s consider the target function. If we define the decision variables xi
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associated with each arc as a column binary vector x, the calculated distance for

each arc Di is essentially the distance of the destination node of the arc, for example,

the distance of arc(4) is D4 = D(node(6)) = 4. Since the sink node is only for the

purpose of balancing the network flow, the distance on the sink node would always

be zero. These distances are defined as a row vector D. The target function can be

simply put as

min Dx (5.9)

where in this example x = [x1, x2, ...x12]
T , and D = [0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 0]

Next, the capital cost constrain inequality and the balance function are consid-

ered. Assume the capital cost of each arc is calculated as in Figure 5.2, the total

budget is B, then we can simply construct the capital cost as a row vector C and

compose the capital cost constrain as

Cx ≤ B (5.10)

where in this example C = [2, 1, 2, 1, 4, 1, 3, 0, 2, 1, 0, 0] and B = 4. Again, the cost

of the last two arcs pointing to the sink node would always be zeros.

The balance function would constrain the flow balance on each node, to ensure

the inflow and outflow are balanced for all the nodes except the source node and

the sink node, i.e. the number of inflow and the number of outflow should be equal

for all the transition nodes. Since we need to have a balance function for each node

as shown in Equation (5.7d), there will be the number of nodes balance functions in

total, to put them into the matrix format this would be Aeqx = b, where Aeq is a

M ×N matrix and x is the previous stated N column vector. To construct this Aeq

we need to know the inflow arcs and outflow arcs of each node, or in another way, the

source and destination node of each arc. This is where the time delay information

is required. The arcs are constructed in this network by using Algorithm 1. When

constructing the arcs, the algorithm begins sequentially on each node, namely the

source node node(S), then node(1), node(2),...,till the sink node node(T ) is reached.
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On each node, the algorithm will create m arcs flowing out of the node into each one

of the candidate setpoints nodes, where the horizontal location of the candidate node

is determined by the calculated time delay. For example, assume we are creating

the arcs for node(1) at t(1) in the figure, first we create the arc flowing into the first

candidate node which is a node with value = 74F , the calculated time delay is 1

so we find the node in the next time layer t(2) as node(3), then we create the arc

flowing into a node with value = 78F , the calculated time delay is now 2, therefore

we find the node node(6) in t(3) as the destination node. Because each node will

have precisely m arcs flowing out, and these arcs are constructed in a sequential way

of traversing all the candidate temperatures, it’s then easy to track each arc’s source

and destination nodes, therefore in turn to calculate the inflow and outflow arcs of

each node. If we denote a outflow as a negative flow while inflow as a positive flow,

the Aeq in the example can be calculated as:

Aeq =



−1 −1 0 0 0 0 0 0 0 0 0 0

1 0 −1 −1 0 0 0 0 0 0 0 0

0 1 0 0 −1 −1 0 0 0 0 0 0

0 0 1 0 0 0 −1 −1 0 0 0 0

0 0 0 0 0 1 0 0 −1 −1 0 0

0 0 0 0 1 0 1 0 1 0 −1 0

0 0 0 1 0 0 0 1 0 1 0 −1

0 0 0 0 0 0 0 0 0 0 1 1



(5.11)

The above matrix can be easily validated by investigating each column and check

if there is one and only one 1 as well as one and only one −1 on each column.

The intuition behind this is the fact each arc must be connecting from one node to

another, where the former node sees this arc as an outflow (−1) and the later sees

it as an inflow (1).

On the other hand, all the nodes expect the source node S and the sink node T

are transition nodes, therefore the net flow on those nodes should be zero. Source
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node S will have a net flow −1 while the sink node has 1. Thus the net flow vector

b =
[
−1 0 0 0 0 0 0 1

]
(5.12)

And the balance function could be written as

Aeqx = b (5.13)

At this point we have constructed the target function as well as the capital cost,

the other constraint needs to be constructed is the number of transitions constraint

which limit the total number of setpoint changes. To construct this constraint, we

will need to introduce some augmented variables to the current solution.

First, we need define what is a transition in the constructed network. A transition

is a change of setpoint temperature in time. For example, arc(1, 6) means setpoint

temperature changes from 74F to 78F, thus counted as a transition. What we need

to find out is the number of transitions happened. If we investigate all the outflow

arcs for each node, it is clear that each node would have m outflow arcs and m− 1

of them would be counted as a transition, the remaining one is the one going to

the same setpoint temperature at the next time step. If we can find a way of

representing whether a transition is taken at each node, we can easily figure out the

total number of transitions of the network by summing each node’s transition up.

By recognizing this properly, we can create an augmented variable for each node to

represent if this node would result a transition for each inflow arc. Suppose on node

n one of the inflow arcs is arc(i) with flow xi, there are m outflow arcs, arc(j1),

arc(j2),...,arc(ji),...,arc(jm), where arc(ji) points to the same setpoint temperature

as the source node of inflow arc(i), and the flow on the outflow arcs are xj1 , xj2 ,...,

respectivel. Then we can create a variable xai:

xai = xi − xji (5.14)

to represent if a transition happens at node n for inflow from arc(i). For example, in

Figure 5.2, the augmented variable for node(1) with inflow x1 will be xa1 = x1− x3.
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If the flow on x1 satisfies x1 = 1, meaning the setpoint temperature on node(1) is

chosen to be 74F, and the outflow on x3 = 1, meaning the next setpoint temperature

is chosen to be 74F, there will be no transition, and xa1 = x1 − x3 = 0. If the next

setpoint temperature is chosen to be 78F, then we have x3 = 0 and x4 = 1, thus

xa1 = 1, there will be one transition.

If we do the same calculation on for each inflow arc on the node and for each of

the nodes in the network, we will have the number of transitions taken at each node,

where the total number of transitions with an augmented variable xa =
∑

i xai.

Now we extend our variable vector x with these augmented variable vector xA =

[xai, xa2, ..., xa]
T , we will get the extended variable vector xE = [x; xA]. And the

augmented variables can be calculated by solving the following equation:

BeqxE = 0 (5.15)

where Beq is constructed by Equation (5.14). An example of the Beq for Figure 5.2

is shown as following:

Beq =



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 xa1 xa2 xa3 xa6 xa

node(1) 1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

node(2) 0 1 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0

node(3) 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0

node(4) 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 −1 0

sum 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 −1


(5.16)

Now the balance function in Equation (5.13) can be rewritten as:Aeq 0

Beq

xE =

b

0

 (5.17)

where we denote the extended AEeq and bEeq as

AEeq =

Aeq 0

Beq

 , bEeq =

b

0

 (5.18)
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and we also extend D and C to DE and CE as

DE =
[
D 0

]
, CE =

[
C 0

]
(5.19)

The final missing piece now is to get the number of transition constraint into

play, which is simply:

xa ≤ TR (5.20)

in matrix representation as:

AEneqxE ≤ TR (5.21)

in this example we have

AEneq =
[
0 0 ... 1

]
(5.22)

Now the network flow problem in Equation (5.7) can be rewritten in matrix

format as:

Minimize DExE (5.23a)

subject to

CExE ≤ B (5.23b)

AEeqxE = bEeq (5.23c)

AEneqxE ≤ TR (5.23d)

XE is a binary vector (5.23e)

All this can be easily translated into CPLEX as in Listing 5.4:

cp l ex = Cplex ( ’ ne t f l ow ’ ) ;

cp l ex . Model . s ense = ’ minimize ’ ;

cp l ex . Param . lpmethod . Cur = 3 ; % Network s implex

cp lex . addCols (D E ’ , [ ] , [ ] , [ ] , char ( ones ( [ 1 l ength (D E) ] ) ∗( ’B ’ ) ) ) ;

cp l ex . addRows(− i n f , C E ,B) ;

cp l ex . addRows( b E eq , A E eq , b E eq ) ;

cp l ex . addRows(− i n f , A E neq ,TR)

Listing 5.4: CPLEX code example for network flow example
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Example Result

The example network in Figure 5.2 solved by CPLEX will generate the optimal

solution as:

x =
[
1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1

]
(5.24)

which tells us the optimal solution will choose the path x1, x3, x8,and x12, with the

total number of transition xa = 1 and total capital cost 4, which is in compliance

with our investigation. The resulted solution is illustrated in Figure 5.3, where the

optimal path is in solid bold lines.
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Figure 5.3: A simple network example with optimal solution
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CHAPTER 6

Experiments and Results

To verify the feasibility of the proposed methods, a set of simulation experiments

are carried out. In this chapter we describe the experiments setup, and discuss the

results. We start by introducing the experiment setup, followed by the experiment

results for all proposed components, i.e. indoor temperature prediction engine,

HVAC load prediction engine, and temperature setpoint optimization engine. We

conclude this chapter with discussion on the experiment results.

6.1 Experiment setup

6.1.1 Simulation Setup

Simulations are conducted to evaluate both the proposed temperature/load predic-

tion algorithm and the optimization methodology. Data collected from three single-

family homes and one office space in Arizona were used as shown in Table 6.1, where

SFi, i = {1, 2, 3} indicates three single-family homes and OFj, j = 1 indicates one

office space respectively. Table 6.1 also shows the time span of the collected data,

the date set length as well as the sampling intervals. Note that for SF1 the sampling

interval was one minute before December 2012 and five minute thereafter.

As stated previously, the data fields include indoor temperature, outdoor tem-

perature, HVAC cooling/heating set point temperature and HVAC cooling/heating

usage. And the data are divided into epochs where each epoch holds one month

length of sampled data, each data epoch is then split into a training set and a test

set at a 70:30 ratio for validation purposes.

Moreover, for optimization validation, the cost estimation engine takes into ac-
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Data Source Starta End Length (Months) Interval (Minutes)
SF1 07/2011 12/2012 18 1
SF1 01/2013 11/2013 11 5
SF2 01/2013 12/2013 12 5
SF3 03/2013 10/2013 6 5
OF1 04/2013 08/2013 5 5

Table 6.1: Collected data source

aStart and End dates in MM/YYYY

Summer (May-Oct) Winter (Nov-Apr)
Base Power Supply Charge(per KWh) $0.033198 $0.025698
Deliver Charge (per KWh)
First 500KWh $0.046925 $0.047369
Next 3000KWh $0.068960 $0.067309
3501KWh and above $0.088960 $0.087309

Table 6.2: Residential pricing plan R-01 based on season and energy consumption

count the time-of-use pricing policies at the local utility company (Tucson Electric

Power (TEP), 2012b). Monthly cost is associated with the total amount of energy

utilized (kilowatt-hour), in addition to the time at which energy is utilized (on-peak,

shoulder-peak, off-peak). An example is shown in Table 6.2.

6.1.2 Evaluation Metrics

For the proposed prediction engine, Mean Square Error (MSE) is utilized as an

evaluation metric to indicate the average of the square of errors

MSE = E[(w̃ − w)2] (6.1)

In addition, since this work aims at performing HVAC usage prediction to esti-

mate the cumulative energy cost of HVAC operation, we introduce another metric

Relative Sum of Errors (RSE), defined as:

RSE =

∑
t w̃(t)−

∑
tw(t)∑

tw(t)
(6.2)
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which represents the cumulative errors of prediction relative to the total usage.

Moreover, to reflect the “low load” situation, we define average load of HVAC

operation as

fload =
Total Time HVAC is ON

Total Time
(6.3)

where a bigger fload means a higher load demand, and vice versa.

To evaluate the proposed optimization methodology, two evaluation metrics are

utilized – the averaged set point temperature difference (ATD) and the reduced

predicted cost (RPC). The ATD metric is simply the mean difference between the

optimized set point schedule and the user specified set point schedule over the to-

be-optimized time scope, as shown in Equation (6.4). The ATD metric will evaluate

the quality of the optimized set point schedule in meeting the desired comfort level.

Note that any deviation from the specified schedule results in a penalty, even if the

optimization sets the cooling set point below the user specified value.

ATD =

∑N
j=1 |Setj −Desiredj|

N
(6.4)

The RPC metric is defined as,

RPC =

∑
j OptCostj −

∑
j OrigCostj∑

j OrigCostj
× 100% (6.5)

where OrigCost is corresponds to the cost of a non-optimized set point schedule

over the given time horizon (10 days) and OptCost corresponds to the cost the

optimized set point schedule generated by the optimization component. A negative

RPC value indicates a percent of savings over the non-optimized set point schedule.

Because the main goal of this proposed work is to 1) estimate the HVAC load

and 2) optimize the setpoint temperature, the performance of indoor temperature

prediction is not evaluated individually. Rather, the outcome of the indoor tempera-

ture engine is evaluated with the HVAC load prediction, as it acts as the predecessor

of the HVAC load prediction.
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For both the prediction engine and optimization engine, a computational time

metric Tcomp is utilized to gauge the computational demand for both of the algo-

rithms.

6.2 Experiment results

We first present the HVAC load prediction without indoor temperature feature (de-

noted as load prediction), as stated in Section 4.2, and we highlight its deficiency

when the “low load problem” occurs. Then we show the revised load prediction

engine with indoor temperature prediction correction (denoted as revised load pre-

diction), described in Section 4.4, as well as its feasibility to address the “low load

problem”. Finally the result of optimization engine is presented and discussed.

6.2.1 Load Prediction

The proposed load prediction algorithm was performed on the test data set with a

70:30 training-test split as stated previously. More specifically, the training data was

first loaded by the prediction engine to calculate the linear regression of both the

equilibrium sections and ramp section, then these calculation results were deployed

on each data points in the test data set to predict the HVAC usage. Note that

in reality at each specific sample the HVAC usage may be either 100% for HVAC

ON or 0% for HVAC OFF, which is due to the intrinsic working status of HVAC

system, and our prediction result provides an estimation in the sense of “mostly

likely AVERAGE HVAC usage”. Figure 6.1 shows the simulation result on the data

sampled from building SF1 in October,2011 with the obtained MSE and RSE are

17.67 and -7.01%, respectively.

Table 6.3 shows the simulation result of the sampled data for July to September

2011 with MSE and RSE calculated for each month.

Although the results in Table 6.3 provide a satisfying RSE for the summer sea-
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Figure 6.1: Simulation on data sampled from building SF1 in August,2011

son in Arizona when cooling demand is high, this mechanism is challenged when

the average load of HVAC operation is low. Table 6.4 shows the result of HVAC

heating load prediction for the same target building in winter season, with large

prediction errors. Therefore the following revised load prediction mechanism with

indoor temperature estimation is utilized.

6.2.2 Load Prediction Revised

The revised load prediction engine comprises an additional indoor temperature pre-

diction engine that provides an estimation of future indoor temperature for the

HVAC load prediction to address the “low load problem”.
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Month July August September
MSE 30.36 28.46 29.29
RSE 7.22% 5.81% 12.48%

Table 6.3: Prediction simulation result: without indoor temperature prediction
(Summer)

Month November December January February
RSE 201% 797% 178% 378%

Table 6.4: Prediction simulation result: without indoor temperature prediction
(Winter)

Indoor temperature prediction
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Figure 6.2: Indoor Prediction

Figure 6.2 shows an example output of the ARMAX model based indoor tem-
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perature estimation, with a model fit of 74%. The dotted-dash line represents the

actual indoor temperature in the time window, while the dash line represents the

predicted indoor temperature, based on the model described in Section 4.4.1.

One of the artifacts to be noted is that the predicted indoor temperature is

“clapped” to the setpoint temperature if it violated the setpoint, such artifacts are

depicted in Figure 6.2, as around time 98 and 120. This “clapping” is forced by

the indoor temperature prediction engine to emulate the effects of HVAC operation,

thus provides a reasonable estimation.

Another artifact is that sometimes the actual indoor temperature itself would

violate the user setpoint, as in the same Figure 6.2 where time = 50 and time = 28,

the actual indoor temperature drops below the user specified heating point. This

behavior might be due to an HVAC system failure and/or gas burner failure. For the

current system setup and framework we did not address this problem, however, it

will be fairly easy to incorporate a system failure detection component that captures

such behavior and compensates for the prediction results.

HVAC load prediction with indoor temperature estimation

With the estimated indoor temperature, HVAC load prediction is then carried out

with the ability to handle the “low load problem”. Figure 6.3 shows an example

of HVAC load prediction result for a (roughly) 10-day horizon, where Figure 6.3a

is the output for the last 10 days of September, 2013 of building SF1, with an

RSE of 3.18%, meaning the predicted load is 3.18% more than the actual load, and

Figure 6.3b the last 8 days of February, 2013 of building SF2, with an RSE of -

1.45%, meaning the predicted load is 1.45% less than the actual load. Additional

results can be found in Appendix A.

Moreover, the proposed scheme is applied to the collected data described in

Table 6.1. The resulting MSE, RSE, load factor and work mode are recorded.

Table 6.5 shows the results for the building SF1, more results for other buildings
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Figure 6.3: (a) Load prediction of last 10 days of September, 2013, SF1 (b) Load
prediction of last 8 days of February, 2013, SF2
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(SF2, SF3, OF1) can be found in Appendix B.1 2

Figure 6.4 shows the distribution of RSE values for building SF1. From the

result we can observe that most of the RSE is bounded in [−15%, 15%], with mean

µRSE = −1.41 and standard deviation σRSE = 8.33. Result for the other test

buildings can be found in Appendix C and summerized in Table 6.6.
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Figure 6.4: Load prediction result of SF1

6.2.3 Optimization

Based on the results from prediction engine, the optimization engine is able to gen-

erate a network flow model and produce an optimized setpoint schedule to provide

to users. Simulations show the effectiveness of optimizing the setpoints.

Figure 6.5a illustrates the original and optimized set points over a 7 day period.

The original schedule reflects the non-optimized schedule of time-varying set points

1Due to sensor failures and/or network failures, some samples are missing or invalid, as indicated

in the result
2March and November are the typical time of year when HVAC operation is nearly zero at the

testing site, therefore the corresponding HVAC usage prediction is not performed
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SF1

Date MSE RSE (%) fload (%) Mode
07/2011 24.8673 4.8265 11.3820 C
08/2011 21.0601 -1.076 10.7517 C
09/2011 20.4265 10.0339 10.703 C
10/2011 17.6692 -6.9748 6.2425 C
11/2011 - - 1.7624 C
12/2011 - - 0.2447 H
01/2012 5.2366 3.2669 1.635 H
02/2012 10.079 -15.6843 1.6994 H
03/2012 - - 0.5511 H
04/2012 15.6678 3.055 2.6924 C
05/2012 18.3329 -6.3613 5.2456 C
06/2012 17.686 17.8812 5.2747 C
07/2012a na na na C
08/2012 25.611 -4.0512 12.641 C
09/2012 20.2492 2.0172 10.216 C
10/2012 17.8369 2.1607 7.5061 C
11/2012 10.6454 6.1453 2.3978 C
12/2012b na na na H
01/2013c na na na H
02/2013 16.3647 -16.2934 12.9513 H
03/2013 - - 0.7123 H
04/2013 14.1961 -12.7021 3.2612 C
05/2013 25.4567 -8.9419 18.4879 C
06/2013d na na na C
07/2013 21.3592 -13.3726 30.2769 C
08/2013 32.5242 10.7593 27.7473 C
09/2013 22.2903 3.1776 22.3296 C
10/2013 13.0819 -1.581 6.0432 C
11/2013 - - 0.9475 C

Table 6.5: Prediction simulation result: with indoor temperature prediction (SF1)

ainvalid data due to sensor failure
bmissing data
cmissing data
dinvalid data due to sensor failure
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Building RSE Bound µRSE σRSE
SF1 [−16.3%, 17.9%] 1.41 8.33
SF2 [−6.0%, 8.0%] 0.26 3.93
SF3 [−10.5%, 8.0%] -0.39 6.12
OF1 [−10.0%, 0%] -5.32 3.06

Table 6.6: RSE results of target buildings
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Figure 6.5: Simulation results comparing (a) the original and optimized set point
temperatures given a budget constraint of $50 and number of transition of 28 for
a 7 day time horizon, and (b) the original and optimized cost per hour of the set
point schedules, total cost for both are $78 and $49

defined by the end user (i.e. no cost constraint). The optimized set points are the

resulting set point schedule given a cost constraint of $50 ($200/month). In an effort

to meet the user defined cost constraint the optimized set point schedule deviates

slightly from the user-specified set point schedule, yielding an ATD value of 1.49◦F.

Figure 6.5b compares the cost associated with the original and optimized set

point schedule. As the cost constraint is the dominant factor, adherence to the user

defined specified set point is sacrificed to ensure the cost constraint is met. In the

example above ATD > 0, indicating a change in the user defined set point schedule.

By making these changes we meet the $50 cost constraint, but also achieve a RPC
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value of - 38%. The negative value indicates a cost saving of 38% over the estimated

cost of the original set point schedule.

The engine optimizes the setpoint schedule in three ways: 1) relax the setpoint

value by setting it to a lower-cost setpoint (set to a higher value in case of cooling

and a lower value in case of heating, 2) relax the setpoint time by extending the

time of a lower-cost setpoint, or 3) take a proactive approach, such as to “pre-cool”

the house to avoid higher grid price and/or take advantage of the ramping sections

where the HVAC usage is nearly zero and the indoor temperature would naturally

flow with the outside temperature.
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Figure 6.6: The ATD and RPC given varying cost constraints.

Figure 6.6 alternatively considers the trade-off between the ATD and RPC

metrics as the cost constraint is varied from $38 to $86, again for a 7 day time

horizon. It is not surprising to see that as the cost constraint is increased, the ATD

metric decreases as the optimization component has more flexibility in finding an
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optimized set point schedule which adheres to the user defined values. Given the

original user defined set point schedule, we can see that a cost constraint of $82 is

sufficient to achieve the desired values, and any budget increase beyond this has no

benefit. Note that in Figure 6.6 the ATD and RPC value is not converged to zero,

as artificial disturbance is employed within the prediction component.

Conversely, a cost constraint below $38 will yield a non-feasible solution, and the

optimization engine would output a warning message to notify the user to either

adjust the budget or set point schedule. Because the network flow problem defined

limited (m) possible set point values within the design space, and infeasible solution

indicates that utilizing the maximum set point values for all times within the time

horizon considered will not achieve the user specified cost constraint. We note

however, that if we increase the number candidate set points, a solution can always

be found.

6.3 Discussion

6.3.1 Accuracy

As shown in the experimentation, the proposed approach has a bounded RSE

for each target building, where the bound for building SF1 is approximately in

[−15%, 15%], and for other buildings this bound is in the range of [−10%, 10%].

Moreover, the average RSE for the target buildings are 1.41%, 0.26%, -0.39% and

-5.32% respectively, meaning an average accuracy of 94% to 99%, with a nominal

prediction horizon of 10 days. Moreover, this work could potentially be extended for

a much larger prediction horizon, based on valid outdoor temperature information

in that horizon.
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6.3.2 Adaptivity

The proposed framework is also be able to address the “low load” problem, where

the HVAC load factor is taken into account and handled by an estimation of indoor

temperature. By doing this the proposed methods are more versatile for variant

target buildings in different locations and/or weather conditions.

Another feature associated with adaptivity of the proposed framework is the

scheme built in for recalculating the system model as well as the optimization, such

that the system model is updated based on the most recent data, to give the user a

more accurate prediction and optimization result.

6.3.3 Optimality

The linear nature of the network flow setup ensures the optimality of the optimiza-

tion engine, given that the network problem setup has at least one feasible solution.

(Ahuja et al., 2003)

6.3.4 Scalability

The proposed methods can be scaled to other systems if these systems hold similar

characteristics in terms of system dynamics, equilibrium properties, and lineariza-

tion properties. For example, the proposed methods can be easily applied to an

energy management system in a building including HVAC unit as well as other ap-

pliances, to give the user estimations and optimization on how all the appliances

are behaving in the building, or, in a route planning example, to give a real-time

optimal route based on the estimation of traffic information.

6.3.5 Computational Demand

The computational demand is composed of the prediction and optimization pro-

cesses. The prediction process has polynomial complexity and requires bounded
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time and memory space. The same is true for the minimum cost flow problem

as we carefully select the algorithm to solve this optimization problem (Bewley,

1989; Orlin, 1985). For the simulations described above, the average processing

time required to obtain an optimized 7 day set point schedule is 0.04 seconds, on an

2.4GHz Intel Dual-Core processor. We additionally implemented the optimization

algorithm to execute on a mobile platform with an Intel Celeron 750 MHz processor,

where an processing time of 2 seconds is required. In the current application, set

points are evaluated once per minute, therefore the computational time needed for

optimization is insignificant compared to the frequency at which the algorithm runs.
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CHAPTER 7

Closure

7.1 Conclusion

Interacting with complex systems and making decisions to guide those systems are

a growing class of problems. To interact with these systems it’s of benefits for users

to have some feedback information available to ensure a well-formed and sometimes

more reasonable decision are made. For example, controlling the gas pedal in an

automotive through an instant fuel efficiency feedback (MPG information displayed

on the dashboard) of the automotive. Another example is determining an HVAC

set point temperature schedule as described earlier.

To provide those feedbacks usually means a system model would be needed. On

the other hand, although linear systems preserve nice properties and characteristics

to be analyzed and studied, in the real world, most systems are nonlinear, and have

complex system dynamics that are very difficult to model, if they can be modeled

at all.

Another challenge faced by building up a model for a complex systems is that it’s

usually difficult to have a general system model to describe arbitrary target system.

Often times each individual target system has specific parameters/behaviors that

are hard to obtain in the modeling phase. For example, the parameters to describe

a building would highly depend on the structure, material, layout, location of the

target building, which makes it impossible to have a generic model for all buildings.

To address those problems, we discussed a data-driven approach that approxi-

mates a complex system and provides feedback to users as a guidance for them to

make any decisions. This approach has the following features:
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• A Data-driven approach is employed to provide an estimation of the target

system output. By the data-driven nature, this work adapts to each individual

target system regardless of their system-specific configurations and parame-

ters, instead, all the parameters will be learned by the system through the

machine learning process, which makes this approach generative.

• The target system is modeled from data sampled by existing and usually

inexpensive sensors, therefore reduce the needs for additional infrastructural

investment on sensors and/or actuators.

• A mid-term prediction/estimation horizon is provided in this work, as for the

HVAC usage application typical prediction horizon of ten days is employed,

which provides a holistic view of the system behavior in a larger scope than

most of the existing one-step ahead solutions.

• Feedback information on the system behavior is provided by this work to the

users to make well-informed decisions. Moreover, an integrated optimization

engine is also developed to calculate an optimal/sub-optimal setpoints as an

supplemental suggestion that helps users make decisions. Furthermore, this

optimization as well as prediction process can be performed “on-line”, there-

fore give users an “up-to-date” information on the system operation cost as

well as decision options.

• The approximation and regression approach in this work is computational

inexpensive and suitable for implementation on embedded devices, therefore

suitable for integrating into existing infrastructure as well as emergent tech-

nologies.

We discussed the formation of this approach mathematically and illustrated its

application in details for an HVAC load prediction/optimization framework.
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In the discussed HVAC management framework, an Averaged Sectional Model

(ASM) is developed to model the system through sampled HVAC usage and envi-

ronmental data. A minimum cost network flow formulation is utilized to generate

the optimal set point temperatures under a user-specified cost constraint.

Simulations on data sampled from three single-family homes and one office space

in Arizona area are conducted. It is demonstrated that this framework can effec-

tively provide an optimized set point temperature and forecasted cost, with aver-

aged Relative Sum of Errors (RSE) 1.41%, 0.26%, -0.39% and -5.32% on each target

building respectively. We also demonstrate the optimization engine that provides

set point temperature schedule suggestions based on the HVAC usage estimation,

and a user cost constraint. In addition, the computation and memory requirements

for this algorithm are suitable for embedded system implementation, where a 2

seconds computation time is required on an Intel Celeron 750MHz single-core pro-

cessor, which is insignificant to the sampling time typically at five minutes. With

this framework, a meaningful interpretation of HVAC usage is provided to users, as

well as the ability to visualize the long term energy and cost consequences to make

well informed decisions.

7.2 Future Work

In this work we demonstrate the feasibility of the proposed method on data sampled

from four buildings in Arizona area. It would be beneficial to gather additional data

from other locations with different parameters such as weather pattern, usage profile

and building structure, and verify the performance of the proposed methods.

Another future work is to apply the method at higher tiers for building energy

systems. For example, this method can be applied to estimate and optimize the

overall home energy consumption including HVAC operation and other appliances,

providing feedback information on the energy cost and/or appliances performance,

and suggestions on the schedule of these appliances to reduce energy consumption; or
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at the community tier that provides relative information and suggestions on energy

consumption in a neighborhood, or even at the regional or national tier. Moreover,

with the emergent development of smart grid/smart home technology, Distributed

Energy Generation (DEG) units such as solar panels and small wind turbines are

becoming pervasive. These units often have a dynamic energy profile that can

be affected by factors from installation location to temperature to manufactoring

differences, which make them hard to be modeled using a dedicated model. With

the help of the proposed system approximation and optimization scheme, however,

these system can be easily factored in and approximated properly within the overall

system, providing useful feedback information for users.

Furthermore, this method can be utilized for demand response analysis. Demand

Response (DR) is defined as: (Balijepalli et al., 2011) “Changes in electric usage by

end-use customers from their normal consumption patterns in response to changes in

the price of electricity over time, or to incentive payments designed to induce lower

electricity use at times of high wholesale market prices or when system reliability is

jeopardized.” The proposed method running on different tiers could provide insights

on the energy usage profiles of end-use customers, and help utility providers make

decisions to manage energy generation and reduce cost.
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APPENDIX A

Prediction Examples

The following figures illustrate part of the example outputs of HVAC usage predic-

tion for the target buildings SF1, SF2, SF3 and OF1 in this work.
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Figure A.1: Load prediction of last 10 days of July, 2011, SF1
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Figure A.2: Load prediction of last 10 days of August, 2011, SF1
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Figure A.3: Load prediction of last 10 days of September, 2011, SF1
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Figure A.4: Load prediction of last 10 days of September, 2012, SF1
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Figure A.5: Load prediction of last 10 days of October, 2012, SF1
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Figure A.6: Load prediction of last 10 days of Februray, 2013, SF2
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Figure A.7: Load prediction of last 10 days of June, 2013, SF2
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Figure A.8: Load prediction of last 10 days of August, 2013, SF2
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Figure A.9: Load prediction of last 10 days of September, 2013, SF2
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Figure A.10: Load prediction of last 10 days of December, 2013, SF2
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Figure A.11: Load prediction of last 10 days of April, 2013, SF3
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Figure A.12: Load prediction of last 10 days of September, 2013, SF3
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Figure A.13: Load prediction of last 10 days of May, 2013, OF1
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Figure A.14: Load prediction of last 10 days of June, 2013, OF1
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Figure A.15: Load prediction of last 10 days of July, 2013, OF1
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Figure A.16: Load prediction of last 10 days of August, 2013, OF1
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APPENDIX B

Prediction Results

The following tables show the HVAC prediction result for the target buildings in this

work. Table B.1 shows results for an office space OF1, while Table B.2, Table B.3 and

Table B.4 show results for three single family houses SF1, SF2 and SF3 respectively.

OF1

Date MSE RSE (%) fload (%) Mode
04/2013 9.2283 -2.6088 6.1047 C
05/2013 17.09 -2.7968 16.1911 C
06/2013 17.1871 -6.5776 12.9881 C
07/2013 15.9911 -4.6269 20.4653 C
08/2013 11.9034 -9.9911 16.5925 C

Table B.1: Prediction simulation result: with indoor temperature prediction (OF1)
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SF1

Date MSE RSE (%) fload (%) Mode
07/2011 24.8673 4.8265 11.3820 C
08/2011 21.0601 -1.076 10.7517 C
09/2011 20.4265 10.0339 10.703 C
10/2011 17.6692 -6.9748 6.2425 C
11/2011 - - 1.7624 C
12/2011 - - 0.2447 H
01/2012 5.2366 3.2669 1.635 H
02/2012 10.079 -15.6843 1.6994 H
03/2012 - - 0.5511 H
04/2012 15.6678 3.055 2.6924 C
05/2012 18.3329 -6.3613 5.2456 C
06/2012 17.686 17.8812 5.2747 C
07/2012a na na na C
08/2012 25.611 -4.0512 12.641 C
09/2012 20.2492 2.0172 10.216 C
10/2012 17.8369 2.1607 7.5061 C
11/2012 10.6454 6.1453 2.3978 C
12/2012b na na na H
01/2013c na na na H
02/2013 16.3647 -16.2934 12.9513 H
03/2013 - - 0.7123 H
04/2013 14.1961 -12.7021 3.2612 C
05/2013 25.4567 -8.9419 18.4879 C
06/2013d na na na C
07/2013 21.3592 -13.3726 30.2769 C
08/2013 32.5242 10.7593 27.7473 C
09/2013 22.2903 3.1776 22.3296 C
10/2013 13.0819 -1.581 6.0432 C
11/2013 - - 0.9475 C

Table B.2: Prediction simulation result: with indoor temperature prediction (SF1)

ainvalid data due to sensor failure
bmissing data
cmissing data
dinvalid data due to sensor failure
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SF2

Date MSE RSE (%) fload (%) Mode
01/2013 - - 0.9129 H
02/2013 3.7928 -1.4465 1.2948 H
03/2013 - - 0.3297 H
04/2013a na na na C
05/2013 26.5236 -5.4374 20.0865 C
06/2013 25.1636 -3.6452 23.4391 C
07/2013 24.7576 2.7812 27.0244 C
08/2013 18.468 -4.1712 20.658 C
09/2013 23.0211 5.8341 20.0001 C
10/2013 17.8531 2.6283 13.2033 C
11/2013 - - 0.4968 C
12/2013 6.5955 7.8236 2.7374 H

Table B.3: Prediction simulation result: with indoor temperature prediction (SF2)

ainvalid data due to sensor failure

SF3

Date MSE RSE (%) fload (%) Mode
03/2013 18.2799 -10.2204 8.5539 C
04/2013 17.1174 4.4788 16.3046 C
05/2013a na na na C
06/2013 15.6407 -8.5831 8.8169 C
07/2013 35.1689 7.4628 39.6892 C
08/2013b na na na C
09/2013 20.5756 0.546 24.8433 C
10/2013 14.1496 3.1626 12.3644 C

Table B.4: Prediction simulation result: with indoor temperature prediction (SF3)

ainvalid data due to sensor failure
binvalid data due to sensor failure



www.manaraa.com

129

APPENDIX C

RSE Charts

The following figures show the HVAC prediction RSE result for the target buildings

in this work.

������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� �������

	��

	��

	��

	�

�

�

��

��

��


��


�
�
�

Figure C.1: Load prediction result of SF1
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Figure C.2: Load prediction result of SF2
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Figure C.3: Load prediction result of SF3
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Figure C.4: Load prediction result of OF1
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Allgöwer, F. and A. Zhen (2000). Nonlinear model predictive control, volume 26.
Springer.

Alternative Software Concept (2012). AEPS. Http://www.alteps.com.

Amjady, N. (2001). Short-term hourly load forecasting using time-series modeling
with peak load estimation capability. Power Systems, IEEE Transactions on,
16(4), pp. 798 –805. ISSN 0885-8950. doi:10.1109/59.962429.

Architectural Energy Corp. (2012). REM/Design.
Http://www.archenergy.com/products/remdesign.

ASHRAE (1996). HVAC systems and equipment. American Society of Heating,
Refrigerating, and Air Conditioning Engineers, Atlanta, GA.

ASHRAE (2001). Energy Estimating and Modeling Methods. ASHRAE Fundamen-
tals.

Aswani, A., N. Master, J. Taneja, A. Krioukov, D. Culler, and C. Tomlin (2012a).
Energy-Efficient Building HVAC Control Using Hybrid System LBMPC. arXiv
preprint arXiv:1204.4717.

Aswani, A., N. Master, J. Taneja, V. Smith, A. Krioukov, D. Culler, and C. Tomlin
(2012b). Identifying models of HVAC systems using semiparametric regression.
In American Control Conference (ACC), 2012, pp. 3675–3680. ISSN 0743-1619.

Athans, M. (1971). The role and use of the stochastic linear-quadratic-Gaussian
problem in control system design. Automatic Control, IEEE Transactions on,
16(6), pp. 529–552.

Autodesk Inc. (2010). Green Building Studio. Http://usa.autodesk.com/green-
building-studio.

Avci, M., M. Erkoc, A. Rahmani, and S. Asfour (2013). Model predictive HVAC
load control in buildings using real-time electricity pricing. Energy and Buildings,
60, pp. 199–209. ISSN 03787788. doi:10.1016/j.enbuild.2013.01.008.



www.manaraa.com

132

Balijepalli, V. M., V. Pradhan, S. Khaparde, and R. Shereef (2011). Review
of demand response under smart grid paradigm. In Innovative Smart Grid
Technologies-India (ISGT India), 2011 IEEE PES, pp. 236–243. IEEE.

Beghi, A., L. Cecchinato, M. Rampazzo, and F. Simmini (2010). Load forecast-
ing for the efficient energy management of HVAC systems. Sustainable Energy
Technologies (ICSET), 2010 IEEE International Conference on, pp. 1–6. doi:
10.1109/ICSET.2010.5684414.

Ben-Nakhi, A. E. and M. A. Mahmoud (2004). Cooling load prediction for buildings
using general regression neural networks. Energy Conversion and Management,
45, pp. 2127–2141. ISSN 0196-8904. doi:10.1016/j.enconman.2003.10.009.

Bewley, T. F. (1989). Advances in Economic Theory. Cambridge University Press.

Camacho, E. F. and C. B. Alba (2013). Model predictive control. Springer.

Camacho, E. F. and C. Bordons (2004). Model predictive control, volume 2. Springer
London.

Catalina, T., V. Iordache, and B. Caracaleanu (2013). Multiple regression model
for fast prediction of the heating energy demand. Energy and Buildings, 57, pp.
302–312. ISSN 03787788. doi:10.1016/j.enbuild.2012.11.010.

Chen, Y., P. B. Luh, C. Guan, Y. Zhao, L. D. Michel, M. A. Coolbeth, P. B.
Friedland, S. J. Rourke, and S. Member (2010). Short-Term Load Forecasting
: Similar Day-Based Wavelet Neural Networks. IEEE Transactions on Power
Systems, 25(1), pp. 322–330.

Cherkassky, V., S. R. Chowdhury, V. Landenberger, S. Tewari, and P. Bursch (2011).
Prediction of electric power consumption for commercial buildings. Neural Net-
works (IJCNN), The 2011 International Joint Conference on, pp. 666–672. ISSN
2161-4393. doi:10.1109/IJCNN.2011.6033285.

Chirarattananon, S. and J. Taveekun (2004). An OTTV-based energy estimation
model for commercial buildings in Thailand. Energy and Buildings, 36(7), pp.
680–689. ISSN 0378-7788. doi:10.1016/j.enbuild.2004.01.035.

Chiu, Y.-C., S. Gao, D.-Y. Lin, and X. Hu (2011). A Routing Behavior Model
for Vacant Taxi Cabs in Urban Traffic Networks. In The 11th Asia-Pacific ITS
Forum & Exhibition.

Clarke, J., J. Cockroft, S. Conner, J. Hand, N. Kelly, R. Moore, T. O’Brien, and
P. Strachan (2002). Simulation-assisted control in building energy management
systems. Energy and buildings, 34(9), pp. 933–940.



www.manaraa.com

133

Cui, P., H. Yang, J. D. Spitler, and Z. Fang (2008). Simulation of hybrid ground-
coupled heat pump with domestic hot water heating systems using HVACSIM+.
Energy and Buildings, 40(9), pp. 1731–1736.

Daou, K., R. Wang, and Z. Xia (2006). Desiccant cooling air conditioning: a review.
Renewable and Sustainable Energy Reviews, 10(2), pp. 55 – 77. ISSN 1364-0321.
doi:http://dx.doi.org/10.1016/j.rser.2004.09.010.

Darghouth, N. R., G. Barbose, and R. Wiser (2011). The impact of rate design and
net metering on the bill savings from distributed PV for residential customers
in California. Energy Policy, 39(9), pp. 5243–5253. ISSN 0301-4215. doi:http:
//dx.doi.org/10.1016/j.enpol.2011.05.040.

Department of Energy (2005). Energy Policy Act of 2005.

Department of Energy (2012). Energy Efficiency and Renewable Energy.
Http://apps1.eere.energy.gov/buildings/energyplus.

Dong, B., C. Cao, and S. E. Lee (2005). Applying support vector machines to predict
building energy consumption in tropical region. Energy and Buildings, 37(5), pp.
545–553.

Dorf, R. C. (1995). Modern control systems. Addison-Wesley Longman Publishing
Co., Inc.

Electricity Advisory Committee (EAC) (December 2008). SmartGrid: Enabler of
the New Energy Economy. A Report by The Electricity Advisory Committee.
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